MATLAB® Coder™
User's Guide

7

MATLAB

R2022b ¢ } MathWorkse



X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Coder™ User's Guide
© COPYRIGHT 2011-2022 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.


https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
October 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019
September 2019
March 2020
September 2020
March 2021
September 2021
March 2022
September 2022

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 2 (R2011a)

Revised for Version 2.1 (Release 2011b)
Revised for Version 2.2 (Release 2012a)
Revised for Version 2.3 (Release 2012b)
Revised for Version 2.4 (Release 2013a)
Revised for Version 2.5 (Release 2013b)
Revised for Version 2.6 (Release 2014a)
Revised for Version 2.7 (Release 2014b)
Revised for Version 2.8 (Release 2015a)
Revised for Version 3.0 (Release 2015b)

Rereleased for Version 2.8.1 (Release 2015aSP1)

Revised for Version 3.1 (Release 2016a)
Revised for Version 3.2 (Release 2016b)
Revised for Version 3.3 (Release 2017a)
Revised for Version 3.4 (Release 2017b)
Revised for Version 4.0 (Release 2018a)
Revised for Version 4.1 (Release 2018b)
Revised for Version 4.2 (Release 2019a)
Revised for Version 4.3 (Release 2019b)
Revised for Version 5.0 (Release 2020a)
Revised for Version 5.1 (Release 2020b)
Revised for Version 5.2 (Release 2021a)
Revised for Version 5.3 (Release 2021b)
Revised for Version 5.4 (Release R2022a)
Revised for Version 5.5 (Release R2022b)






Check Bug Reports for Issues and Fixes

Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.


https://www.mathworks.com/support/bugreports/
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*  “Product Overview” on page 1-3



1 About MATLAB Coder

MATLAB Coder Product Description

1-2

Generate C and C++ code from MATLAB code

MATLAB Coder generates C and C++ code from MATLAB code for a variety of hardware platforms,
from desktop systems to embedded hardware. It supports most of the MATLAB language and a wide
range of toolboxes. You can integrate the generated code into your projects as source code, static
libraries, or dynamic libraries. The generated code is readable and portable. You can combine it with
key parts of your existing C and C++ code and libraries. You can also package the generated code as
a MEX-function for use in MATLAB.

When used with Embedded Coder®, MATLAB Coder provides code customizations, target-specific
optimizations, code traceability, and software-in-the-loop (SIL) and processor-in-the-loop (PIL)
verification.

To deploy MATLAB programs as standalone applications, use MATLAB Compiler™. To generate
software components for integration with other programming languages, use MATLAB Compiler
SDK™.



Product Overview

Product Overview

In this section...
“When to Use MATLAB Coder” on page 1-3
“Code Generation for Embedded Software Applications” on page 1-3

“Code Generation for Fixed-Point Algorithms” on page 1-3

When to Use MATLAB Coder
Use MATLAB Coder to:

* Generate readable, efficient, standalone C/C++ code from MATLAB code.
* Generate MEX functions from MATLAB code to:

* Accelerate your MATLAB algorithms.
* Verify generated C code within MATLAB.
» Integrate custom C/C++ code into MATLAB.

Code Generation for Embedded Software Applications

The Embedded Coder product extends the MATLAB Coder product with features that are important
for embedded software development. Using the Embedded Coder add-on product, you can generate
code that has the clarity and efficiency of professional handwritten code. For example, you can:

* Generate code that is compact and fast, which is essential for real-time simulators, on-target rapid
prototyping boards, microprocessors used in mass production, and embedded systems.

» Customize the appearance of the generated code.

* Optimize the generated code for a specific target environment.

» Enable tracing options that help you to verify the generated code.

* Generate reusable, reentrant code.

Code Generation for Fixed-Point Algorithms

Using the Fixed-Point Designer™ product, you can generate:

* MEX functions to accelerate fixed-point algorithms.
* Fixed-point code that provides a bit-wise match to MEX function results.
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Design Considerations for C/C++ Code
Generation

* “When to Generate Code from MATLAB Algorithms” on page 2-2

* “Which Code Generation Feature to Use” on page 2-3

* “Prerequisites for C/C++ Code Generation from MATLAB” on page 2-4

* “MATLAB Code Design Considerations for Code Generation” on page 2-5

+ “Differences Between Generated Code and MATLAB Code” on page 2-6

* “Potential Differences Reporting” on page 2-20

* “Potential Differences Messages” on page 2-22

* “MATLAB Language Features Supported for C/C++ Code Generation” on page 2-26



2 Design Considerations for C/C++ Code Generation

When to Generate Code from MATLAB Algorithms

2-2

Generating code from MATLAB algorithms for desktop and embedded systems allows you to perform
your software design, implementation, and testing completely within the MATLAB workspace. You

can:
» Verify that your algorithms are suitable for code generation

* Generate efficient, readable, and compact C/C++ code automatically, which eliminates the need to
manually translate your MATLAB algorithms and minimizes the risk of introducing errors in the
code.

* Modify your design in MATLAB code to take into account the specific requirements of desktop and
embedded applications, such as data type management, memory use, and speed.

» Test the generated code and easily verify that your modified algorithms are functionally equivalent
to your original MATLAB algorithms.

* Generate MEX functions to:

* Accelerate MATLAB algorithms in certain applications.
* Speed up fixed-point MATLAB code.
* Generate hardware description language (HDL) from MATLAB code.

When Not to Generate Code from MATLAB Algorithms

Do not generate code from MATLAB algorithms for the following applications. Use the recommended
MathWorks® product instead.

To: Use:

Deploy an application that uses handle graphics |MATLAB Compiler

Use Java® MATLAB Compiler SDK

Use toolbox functions that do not support code Toolbox functions that you rewrite for desktop and
generation embedded applications

Deploy MATLAB based GUI applications on a MATLAB Compiler
supported MATLAB host

Deploy web-based or Windows® applications MATLAB Compiler SDK

Interface C code with MATLAB MATLAB mex function




Which Code Generation Feature to Use

Which Code Generation Feature to Use

To...

Use...

Required Product

To Explore Further...

Generate MEX functions
for verifying generated
code

codegen function

MATLAB Coder

Try this in “Accelerate
MATLAB Algorithm by
Generating MEX
Function”.

Produce readable,
efficient, and compact
code from MATLAB
algorithms for deployment
to desktop and embedded
systems.

MATLAB Coder app

MATLAB Coder

Try this in “Generate C
Code by Using the
MATLAB Coder App”.

codegen function

MATLAB Coder

Try this in “Generate C
Code at the Command
Line”.

Generate MEX functions to
accelerate MATLAB
algorithms

MATLAB Coder app

MATLAB Coder

codegen function

MATLAB Coder

See “Accelerate MATLAB
Algorithms” on page 33-
6.

Integrate MATLAB code
into Simulink®

MATLAB Function block

Simulink

Try this in “Call MATLAB
Function Files in MATLAB
Function Blocks”
(Simulink).

Speed up fixed point
MATLAB code

fiaccel function

Fixed-Point Designer

Learn more in “Code
Acceleration and Code
Generation from MATLAB”
(Fixed-Point Designer).

Integrate custom C code
into MATLAB and generate
efficient, readable code

codegen function

MATLAB Coder

Learn more in “Call
Custom C/C++ Code from
the Generated Code” on
page 34-2.

Integrate custom C code
into code generated from
MATLAB

coder.ceval function

MATLAB Coder

Learn more in
coder.ceval.

Generate HDL from
MATLAB code

MATLAB Function block

Simulink and
HDL Coder™

Learn more at
www . mathworks.com/
products/slhdlcoder.

2-3


https://www.mathworks.com/products/hdl-coder.html
https://www.mathworks.com/products/hdl-coder.html
https://www.mathworks.com/products/hdl-coder.html

2 Design Considerations for C/C++ Code Generation

Prerequisites for C/C++ Code Generation from MATLAB

To generate C/C++ or MEX code from MATLAB algorithms, you must install the following software:

* MATLAB Coder product
* C/C++ compiler



MATLAB Code Design Considerations for Code Generation

MATLAB Code Design Considerations for Code Generation

When writing MATLAB code that you want to convert into efficient, standalone C/C++ code, you must
consider the following:

Data types

C and C++ use static typing. To determine the types of your variables before use, MATLAB Coder
requires a complete assignment to each variable.

Array sizing

Variable-size arrays and matrices are supported for code generation. You can define inputs,
outputs, and local variables in MATLAB functions to represent data that varies in size at run time.

Memory
You can choose whether the generated code uses static or dynamic memory allocation.

With dynamic memory allocation, you potentially use less memory at the expense of time to
manage the memory. With static memory, you get better speed, but with higher memory usage.
Most MATLAB code takes advantage of the dynamic sizing features in MATLAB, therefore dynamic
memory allocation typically enables you to generate code from existing MATLAB code without
modifying it much. Dynamic memory allocation also allows some programs to compile even when
upper bounds cannot be found.

Static allocation reduces the memory footprint of the generated code, and therefore is suitable for
applications where there is a limited amount of available memory, such as embedded applications.

Speed

Because embedded applications must run in real time, the code must be fast enough to meet the
required clock rate.

To improve the speed of the generated code:

* Choose a suitable C/C++ compiler. Do not use the default compiler that MathWorks supplies
with MATLAB for Windows 64-bit platforms.

* Consider disabling run-time checks.

By default, for safety, the code generated for your MATLAB code contains memory integrity
checks and responsiveness checks. Generally, these checks result in more generated code and
slower simulation. Disabling run-time checks usually results in streamlined generated code and
faster simulation. Disable these checks only if you have verified that array bounds and
dimension checking is unnecessary.

See Also

“Data Definition”
“Code Generation for Variable-Size Arrays” on page 6-2
“Control Run-Time Checks” on page 33-12
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To convert MATLAB code to efficient C/C++ code, the code generator introduces optimizations that
intentionally cause the generated code to behave differently, and sometimes produce different results,
than the original source code.

Here are some of the differences:

* “Functions that have Multiple Possible Outputs” on page 2-7

* “Writing to ans Variable” on page 2-7

» “Logical Short-Circuiting” on page 2-7

* “Loop Index Overflow” on page 2-8

* “Indexing for Loops by Using Single Precision Operands” on page 2-9

* “Index of an Unentered for Loop” on page 2-10

* “Character Size” on page 2-11

* “Order of Evaluation in Expressions” on page 2-11

* “Name Resolution While Constructing Function Handles” on page 2-12

* “Termination Behavior” on page 2-13

» “Size of Variable-Size N-D Arrays” on page 2-13

* “Size of Empty Arrays” on page 2-14

» “Size of Empty Array That Results from Deleting Elements of an Array” on page 2-14

* “Binary Element-Wise Operations with Single and Double Operands” on page 2-14

* “Floating-Point Numerical Results” on page 2-15

* “NaN and Infinity” on page 2-15

* “Negative Zero” on page 2-16

* “Code Generation Target” on page 2-16

* “MATLAB Class Property Initialization” on page 2-16

* “MATLAB Classes in Nested Property Assignments That Have Set Methods” on page 2-16

+ “MATLAB Handle Class Destructors” on page 2-17

* “Variable-Size Data” on page 2-17

* “Complex Numbers” on page 2-17

* “Converting Strings with Consecutive Unary Operators to double” on page 2-17

» “Display Function” on page 2-17

These differences are applicable for:

* MEX and standalone C/C++ code generation by using the codegen command or the MATLAB
Coder app.

» Fixed-point code acceleration by generating MEX using the fiaccel command.
* MATLAB Function block simulation using Simulink.
When you run your generated fiaccel MEX, C/C++ MEX or standalone C/C++ code, run-time error

checks can detect some of these differences. By default, run-time error checks are enabled for MEX
code and disabled for standalone C/C++ code. To help you identify and address differences before
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you deploy code, the code generator reports a subset of the differences as potential differences on
page 2-20.

Functions that have Multiple Possible Outputs

Certain mathematical operations, such as singular value decomposition and eigenvalue
decomposition of a matrix, can have multiple answers. Two different algorithms implementing such
an operation can return different outputs for identical input values. Two different implementations of
the same algorithm can also exhibit the same behavior.

For such mathematical operations, the corresponding functions in the generated code and MATLAB
might return different outputs for identical input values. To see if a function has this behavior, in the
corresponding function reference page, see the C/C++ Code Generation section under Extended
Capabilities. Examples of such functions include svd and eig.

Writing to ans Variable

When you run MATLAB code that returns an output without specifying an output argument, MATLAB
implicitly writes the output to the ans variable. If the variable ans already exists in the workspace,
MATLAB updates its value to the output returned.

The code generated from such MATLAB code does not implicitly write the output to an ans variable.

For example, define the MATLAB function foo that explicitly creates an ans variable in the first line.
The function then implicitly updates the value of ans when the second line executes.

function foo %#codegen

ans = 1;
2;
disp(ans);
end

Run foo at the command line. The final value of ans, which is 2, is displayed at the command line.
foo

2

Generate a MEX function from foo.

codegen foo

Run the generated MEX function foo mex. This function explicitly creates the ans variable and
assigns the value 1 to it. But foo mex does not implicitly update the value of ans to 2.

foo_mex

1

Logical Short-Circuiting

Suppose that your MATLAB code has the logical operators & and | placed inside square brackets

([ and ]). For such code patterns, the generated code does not employ short-circuiting behavior for
these logical operators, but some MATLAB execution employs short-circuiting behavior. See “Tips”
and “Tips”.
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For example, define the MATLAB function foo that uses the & operator inside square brackets in the
conditional expression of an if. . .end block.

function foo

if [returnsFalse() & hasSideEffects()]
end

end

function out = returnsFalse
out = false;
end

function out = hasSideEffects
out = true;

disp('This is my string');
end

The first argument of the & operator is always false and determines the value of the conditional
expression. So, in MATLAB execution, short-circuiting is employed and the second argument is not
evaluated. So, foo does not call the hasSideEffects function during execution and does not
display anything at the command line.

Generate a MEX function for foo. Call the generated MEX function foo mex.
foo_mex
This is my string

In the generated code, short-circuiting is not employed. So, the hasSideEffects function is called
and the string is displayed at the command line.

Loop Index Overflow

Suppose that a for-loop end value is equal to or close to the maximum or minimum value for the loop
index data type. In the generated code, the last increment or decrement of the loop index might
cause the index variable to overflow. The index overflow might result in an infinite loop.

When memory integrity checks are enabled, if the code generator detects that the loop index might
overflow, it reports an error. The software error checking is conservative. It might incorrectly report a
loop index overflow. By default, memory-integrity checks are enabled for MEX code and disabled for
standalone C/C++ code. See “Why Test MEX Functions in MATLAB?” on page 26-2 and “Generate
Standalone C/C++ Code That Detects and Reports Run-Time Errors” on page 29-20.

To avoid a loop index overflow, use the workarounds in this table.
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Loop Conditions Causing the Potential
Overflow

Workaround

The loop index increments by 1.

The end value equals the maximum value of
the integer type.

If the loop does not have to cover the full range of
the integer type, rewrite the loop so that the end
value is not equal to the maximum value of the
integer type. For example, replace:

N=intmax('int16"')
for k=N-10:N

with:

for k=1:10

The loop index decrements by 1.

The end value equals the minimum value of
the integer type.

If the loop does not have to cover the full range of
the integer type, rewrite the loop so that the end
value is not equal to the minimum value of the
integer type. For example, replace:
N=intmin('int32')

for k=N+10:-1:N

with:

for k=10:-1:1

The loop index increments or decrements by
1.

The start value equals the minimum or
maximum value of the integer type.

The end value equals the maximum or
minimum value of the integer type.

If the loop must cover the full range of the
integer type, cast the type of the loop start, step,
and end values to a bigger integer or to double.
For example, rewrite:

M= intmin('intl6');
N= intmax('intl6');
for k=M:N

% Loop body
end

as:

M= intmin('intl6');

N= intmax('intl6');

for k=int32(M):int32(N)
% Loop body

end

The loop index increments or decrements by a

value not equal to 1.

On the last loop iteration, the loop index is not

equal to the end value.

Rewrite the loop so that the loop index in the last
loop iteration is equal to the end value.

Indexing for Loops by Using Single Precision Operands

Suppose in your MATLAB code, you are indexing a for loop that has a colon operator, where at least
one of the colon operands is a single type operand and the number of iterations is greater than

flintmax('single') =

16777216. When all these conditions are true, code generation might
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generate run-time or compile-time errors because the generated code calculates different values for
the loop index variable than the values that MATLAB calculates.

For example, consider this MATLAB code:

function j = singlePIndex

n = flintmax('single') + 2;

j = single(0);

for i single(1l):single(n)
] 1;

end
end

This code snippet executes in MATLAB, but it causes a compile-time or run-time error because the
value of the loop index variable, i, is calculated differently in the generated code. The code generator
displays a compile-time or run-time error and stops code generation or execution to prevent this
discrepancy.

To avoid this discrepancy, replace the single type operands with double type or integer type operands.

For more information on run-time errors, see “Generate Standalone C/C++ Code That Detects and
Reports Run-Time Errors” on page 29-20.

Index of an Unentered for Loop

In your MATLAB code and generated code, after a for loop execution is complete, the value of the
index variable is equal to its value during the final iteration of the for loop.

In MATLAB, if the loop does not execute, the value of the index variable is stored as [ ] (empty
matrix). In generated code, if the loop does not execute, the value of the index variable is different
than the MATLAB index variable.

* Ifyou provide the for loop start and end variables at run time, the value of the index variable is
equal to the start of the range. For example, consider this MATLAB code:

function out = indexTest(a,b)
for i = a:b

end

out = 1i;

end

Suppose that a and b are passed as 1 and - 1. The for loop does not execute. In MATLAB, out is
assigned [ ]. In the generated code, out is assigned the value of a, which is 1.

* Ifyou provide the for loop start and end values before compile time, the value of the index
variable is assigned [ ] in both MATLAB and the generated code. Consider this MATLAB code:

function out = indexTest
for i = 1:-1

end

out = 1i;

end

In both MATLAB and the generated code, out is assigned [ ].
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Character Size

MATLAB supports 16-bit characters, but the generated code represents characters in 8 bits, the
standard size for most embedded languages like C. See “Encoding of Characters in Code Generation”
on page 5-12.

Order of Evaluation in Expressions

Generated code does not enforce the order of evaluation in expressions. For most expressions, the
order of evaluation is not significant. For expressions that have side effects, the generated code might
produce the side effects in a different order from the original MATLAB code. Expressions that
produce side effects include those that:

* Modify persistent or global variables

* Display data to the screen

* Write data to files

* Modify the properties of handle class objects

In addition, the generated code does not enforce order of evaluation of logical operators that do not
short circuit.

For more predictable results, it is good coding practice to split expressions that depend on the order
of evaluation into multiple statements.

e Rewrite

A= f1() + f2();

as
A= fl1();
A=A+ f2();

so that the generated code calls f1 before f2.
* Assign the outputs of a multi-output function call to variables that do not depend on one another.
For example, rewrite

[y, y.f, y.gl = foo;

as

y.f
y.g

*  When you access the contents of multiple cells of a cell array, assign the results to variables that
do not depend on one another. For example, rewrite

[y, a, bl = foo;

ly, y.f, y.gl = z{:};

as
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Ly,
y.f
y.g

Name Resolution While Constructing Function Handles

MATLAB and code generation follow different precedence rules for resolving names that follow the
symbol @. These rules do not apply to anonymous functions. The precedence rules are summarized in

this table.

Expression

Precedence Order in MATLAB

Precedence Order in Code
Generation

An expression that does not
contain periods, for example @x

Nested function, local function,
private function, path function

Local variable, nested function,
local function, private function,
path function

An expression that contains
exactly one period, for example

@x.y

Local variable, path function

Local variable, path function
(Same as MATLAB)

An expression that contains
more than one period, for

example @x.y.z

Path function

Local variable, path function

If x is a local variable that is itself a function handle, generated code and MATLAB interpret the

expression @x differently:

* MATLAB produces an error.

* Generated code interprets @x as the function handle of x itself.

Here is an example that shows this difference in behavior for an expression that contains two periods.

Suppose that your current working folder contains a package x, which contains another package v,
which contains the function z. The current working folder also contains the entry-point function foo
for which you want to generate code.

4\ Current Folder

Mame

= +%

+y
Jfﬂ zm
Jfﬂ foo.m

T
L)
S

Details
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This is the definition for the file foo:

function out = foo
X.y.z = @()'x.y.z is an anonymous function';
out = g(x);

end

function out = g(x)
f=@x.y.z;
out = f();

end

This is the definition for function z:

function out = z
out = 'x.y.z is a package function';
end

Generate a MEX function for foo. Separately call both the generated MEX function foo mex and the
MATLAB function foo.

codegen foo
foo_mex
foo

ans =

'X.y.z 1is an anonymous function'

ans =

'X.y.z is a package function'

The generated code produces the first output. MATLAB produces the second output. Code generation
resolves @x.Y .z to the local variable x that is defined in foo. MATLAB resolves @x.y. z to z, which
is within the package x.y.

Termination Behavior

Generated code does not match the termination behavior of MATLAB source code. For example, if
infinite loops do not have side effects, optimizations remove them from generated code. As a result,
the generated code can possibly terminate even though the corresponding MATLAB code does not.

Size of Variable-Size N-D Arrays

For variable-size N-D arrays, the size function might return a different result in generated code than
in MATLAB source code. The size function sometimes returns trailing ones (singleton dimensions) in
generated code, but always drops trailing ones in MATLAB. For example, for an N-D array X with
dimensions [4 2 1 1], size(X) might return [4 2 1 1] in generated code, but always returns [4
2] in MATLAB. See “Incompatibility with MATLAB in Determining Size of Variable-Size N-D Arrays”
on page 6-16.
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Size of Empty Arrays

The size of an empty array in generated code might be different from its size in MATLAB source code.
See “Incompatibility with MATLAB in Determining Size of Empty Arrays” on page 6-16.

Size of Empty Array That Results from Deleting Elements of an Array

Deleting all elements of an array results in an empty array. The size of this empty array in generated

code might differ from its size in MATLAB source code.

Case

Example Code

Size of Empty Array
in MATLAB

Size of Empty
Array in Generated
Code

column vector by
deleting one element at
a time.

X = zeros(4,1);
for i = 1:4

X(1)= [1;
end

Delete all elements of  |ceder.varsize("x",[4,4],[1,11); 0-by-0 1-by-0
X = zeros(2);

an m-by-n array by X(:) = [1;

using the colon

operator (:).

Delete all elements of a |ceder.varsize('x",[1,4],10,11); 0-by-0 1-by-0
N X = zeros(1,4);

row vector by using the |x(:) = [1;

colon operator (:).

Delete all elements of a |coder-varsize( X7, [4,11,11,01); 0-by-0 0-by-1

i = zeros(4,1);

column vector by using |x(:) = [1;

the colon operator (:).

Delete all elements of a |ceder.varsize('x",[4,1],[1,01); 1-by-0 0-by-1

Binary Element-Wise Operations with Single and Double Operands

If your MATLAB code contains a binary element-wise operation that involves a single type operand
and a double type operand, the generated code might not produce the same result as MATLAB.

For such an operation, MATLAB casts both operands to double type and performs the operation with
the double types. MATLAB then casts the result to single type and returns it.

The generated code casts the double type operand to single type. It then performs the operation with
the two single types and returns the result.

For example, define a MATLAB function foo that calls the binary element-wise operation plus.

function out = foo(a,b)

out = a + b;
end

Define a variable s1 of single type and a variable v1 of double type. Generate a MEX function for foo

that accepts a single type input and a double type input.

sl
di

single(1l.4e32);
-5.305e+32;

codegen foo -args {sl, dl}
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Call both foo and foo mex with inputs s1 and d1. Compare the two results.
ml = foo(sl,dl);
mlc = foo mex(sl,dl);
ml == mlc
ans =
logical
0

The output of the comparison is a logical 0, which indicates that the generated code and MATLAB
produces different results for these inputs.

Floating-Point Numerical Results
The generated code might not produce the same floating-point numerical results as MATLAB in these:
When computer hardware uses extended precision registers

Results vary depending on how the C/C++ compiler allocates extended precision floating-point
registers. Computation results might not match MATLAB calculations because of different compiler
optimization settings or different code surrounding the floating-point calculations.

For certain advanced library functions

The generated code might use different algorithms to implement certain advanced library functions,
such as fft, svd, eig, mldivide, and mrdivide.

For example, the generated code uses a simpler algorithm to implement svd to accommodate a
smaller footprint. Results might also vary according to matrix properties. For example, MATLAB
might detect symmetric or Hermitian matrices at run time and switch to specialized algorithms that
perform computations faster than implementations in the generated code.

For implementation of BLAS library functions

For implementations of BLAS library functions, generated C/C++ code uses reference
implementations of BLAS functions. These reference implementations might produce different results
from platform-specific BLAS implementations in MATLAB.

NaN and Infinity

The generated code might not produce exactly the same pattern of NaN and Inf values as MATLAB
code when these values are mathematically meaningless. For example, if MATLAB output contains a
NaN, output from the generated code should also contain a NaN, but not necessarily in the same
place.

The bit pattern for NaN can differ between MATLAB code output and generated code output because
the C99 language standard that is used to generate code does not specify a unique bit pattern for NaN
across all implementations. Avoid comparing bit patterns across different implementations, for
example, between MATLAB output and SIL or PIL output.
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Negative Zero

In a floating-point type, the value 0 has either a positive sign or a negative sign. Arithmetically, 0 is
equal to -0, but some operations are sensitive to the sign of a 0 input. Examples include rdivide,
atan2, atan2d, and angle. Division by 0 produces Inf, but division by -0 produces - Inf. Similarly,
atan2d (0, -1) produces 180, but atan2d (-0, -1) produces -180.

If the code generator detects that a floating-point variable takes only integer values of a suitable
range, then the code generator can use an integer type for the variable in the generated code. If the
code generator uses an integer type for the variable, then the variable stores -0 as +0 because an
integer type does not store a sign for the value 0. If the generated code casts the variable back to a
floating-point type, the sign of 0 is positive. Division by 0 produces Inf, not - Inf. Similarly,
atan2d (0, -1) produces 180, not -180.

There are other contexts in which the generated code might treat -0 differently than MATLAB. For
example, suppose that your MATLAB code computes the minimum of two scalar doubles x and y by
using z = min(x,y). The corresponding line in the generated C code might be z = fmin(x,vy).
The function fmin is defined in the runtime math library of the C compiler. Because the comparison
operation 0.0 == -0.0 returns true in C/C++, the compiler's implementation of fmin might return
either 0.0 or -0.0 for fmin(0.0,-0.0).

Code Generation Target

The coder.target function returns different values in MATLAB than in the generated code. The
intent is to help you determine whether your function is executing in MATLAB or has been compiled
for a simulation or code generation target. See coder.target.

MATLAB Class Property Initialization

Before code generation, at class loading time, MATLAB computes class default values. The code
generator uses the values that MATLAB computes. It does not recompute default values. If the
property definition uses a function call to compute the initial value, the code generator does not
execute this function. If the function has side effects such as modifying a global variable or a
persistent variable, then it is possible that the generated code might produce different results than
MATLAB. For more information, see “Defining Class Properties for Code Generation” on page 15-4.

MATLAB Classes in Nested Property Assignments That Have Set
Methods

When you assign a value to a handle object property, which is itself a property of another object, and
so on, then the generated code can call set methods for handle classes that MATLAB does not call.

For example, suppose that you define a set of variables such that x is a handle object, pa is an object,
pb is a handle object, and pc is a property of pb. Then you make a nested property assignment, such
as:

X.pa.pb.pc = 0;

In this case, the generated code calls the set method for the object pb and the set method for x.
MATLAB calls only the set method for pb.
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MATLAB Handle Class Destructors

The behavior of handle class destructors in the generated code can be different from the behavior in
MATLAB in these situations:

* The order of destruction of several independent objects might be different in MATLAB than in the
generated code.

* The lifetime of objects in the generated code can be different from their lifetime in MATLAB.

* The generated code does not destroy partially constructed objects. If a handle object is not fully
constructed at run time, the generated code produces an error message but does not call the
delete method for that object. For a System object™, if there is a run-time error in setupImpl,
the generated code does not call releaseImpl for that object.

MATLAB does call the delete method to destroy a partially constructed object.

For more information, see “Code Generation for Handle Class Destructors” on page 15-15.

Variable-Size Data

See “Incompatibilities with MATLAB in Variable-Size Support for Code Generation” on page 6-15.

Complex Numbers

See “Code Generation for Complex Data” on page 5-8.

Converting Strings with Consecutive Unary Operators to double

Converting a string that contains multiple, consecutive unary operators to double can produce
different results between MATLAB and the generated code. Consider this function:

function out = foo(op)
out = double(op + 1);
end

For an input value " - -", the function converts the string "--1" to double. In MATLAB, the answer
is NaN. In the generated code, the answer is 1.

Display Function

Statements and expressions in MATLAB code that omit the semicolon implicitly invoke the display
function. You can also explicitly invoke display as shown here:

display(2+3);
5

The MEX code generated for MATLAB code that invokes the display function preserves calls to this
function and shows the output. In standalone code generated for targets that do not have access to
MATLAB Runtime, implicit and explicit calls to display are removed. This includes calls to
overridden class methods of display.

To display text in code generated for other targets, override the disp function in your MATLAB
classes. For example:
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%MATLAB Class

classdef foo
methods
function obj = foo
end
function disp(self)
disp("Overridden disp");
end
end
end

%Entry-point Function

function callDisp
a = foo;

disp(a);

end

The generated code for the entry-point function is shown here:

/* Include Files */
#include "callDisp.h"
#include <stdio.h>

/* Function Definitions */

/*
* Arguments : void
* Return Type : void
*/
void callDisp(void)
{
printf("%ss\n", "Overridden disp");
fflush(stdout);
}

Function Handle Difference

Invoking display through a function handle in MATLAB prints the name of the variable as well. For
example, running this function in MATLAB results in the following output:

function displayDiff
z = 10;

f = @display;

f(z)

end

Z =

10

However, the generated code for this snippet only outputs the value 10.
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See Also

More About

. “Potential Differences Reporting” on page 2-20

. “Potential Differences Messages” on page 2-22

. “Why Test MEX Functions in MATLAB?” on page 26-2

. “Generate Standalone C/C++ Code That Detects and Reports Run-Time Errors” on page 29-20
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Generation of efficient C/C++ code from MATLAB code sometimes results in behavior differences
between the generated code and the MATLAB code on page 2-6. When you run your program, run-
time error checks can detect some of these differences. By default, run-time error checks are:

* Enabled for MEX code generated by using codegen, fiaccel, or the MATLAB Coder app.
* Disabled for standalone C/C++ code generated by using codegen or the MATLAB Coder app.

To help you identify and address differences before you deploy code, the code generator reports a
subset of the differences as potential differences. A potential difference is a difference that occurs at
run time only under certain conditions.

Addressing Potential Differences Messages

If the code generator detects a potential difference, it displays a message for the difference on the
Potential Differences tab of the report. If you use the MATLAB Coder app to generate code, you can
view the message in the Potential Differences tab of the app itself. To highlight the MATLAB code
that corresponds to the message, click the message.

The presence of a potential difference message does not necessarily mean that the difference will
occur when you run the generated code. To determine whether the potential difference affects your
application:

* Analyze the behavior of your MATLAB code for the range of data for your application.

* Test a MEX function generated from your MATLAB code. Use the range of data that your
application uses. If the difference occurs, the MEX function reports an error.

If your analysis or testing confirms the reported difference, consider modifying your code. Some
potential differences messages provide a workaround. For additional information about some of the
potential differences messages, see “Potential Differences Messages” on page 2-22. Even if you
modify your code to prevent a difference from occurring at run time, the code generator might still
report the potential difference.

The set of potential differences that the code generator detects is a subset of the differences that
MEX functions report as errors. It is a best practice to test a MEX function over the full range of
application data.

Disabling and Enabling Potential Differences Reporting for MATLAB
Coder

By default, potential differences reporting is enabled for:

* Code generation with the codegen command
* The Check for Run-Time Issues step in the MATLAB Coder app

To disable potential differences reporting:

* In a code configuration object, set ReportPotentialDifferences to false.

* In the MATLAB Coder app, in the Debugging settings, clear the Report differences from
MATLAB check box.



Potential Differences Reporting

By default, potential differences reporting is disabled for the Generate code step and the code
generation report in the MATLAB Coder app. To enable potential differences reporting, in the
Debugging settings, select the Report differences from MATLAB check box.

Disabling and Enabling Potential Differences Reporting for Fixed-Point
Designer

By default, potential differences reporting is enabled for code acceleration with fiaccel. To disable
it, in a code acceleration configuration object, set ReportPotentialDifferences to false.

See Also

More About

“Potential Differences Messages” on page 2-22

“Differences Between Generated Code and MATLAB Code” on page 2-6

“Incompatibilities with MATLAB in Variable-Size Support for Code Generation” on page 6-15
“Why Test MEX Functions in MATLAB?” on page 26-2

“Generate Standalone C/C++ Code That Detects and Reports Run-Time Errors” on page 29-20
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When you enable potential differences on page 2-20 reporting, the code generator reports potential
differences between the behavior of the generated code and the behavior of the MATLAB code.
Reviewing and addressing potential differences before you generate standalone code helps you to
avoid errors and incorrect answers in generated code.

Here are some of the potential differences messages:

* “Automatic Dimension Incompatibility” on page 2-22
* “mtimes No Dynamic Scalar Expansion” on page 2-22
* “Matrix-Matrix Indexing” on page 2-23

* “Vector-Vector Indexing” on page 2-23

* “Loop Index Overflow” on page 2-24

Automatic Dimension Incompatibility

In the generated code, the dimension to operate along is
selected automatically, and might be different from MATLAB.
Consider specifying the working dimension explicitly as a
constant value.

This restriction applies to functions that take the working dimension (the dimension along which to
operate) as input. In MATLAB and in code generation, if you do not supply the working dimension, the
function selects it. In MATLAB, the function selects the first dimension whose size does not equal 1.
For code generation, the function selects the first dimension that has a variable size or that has a
fixed size that does not equal 1. If the working dimension has a variable size and it becomes 1 at run
time, then the working dimension is different from the working dimension in MATLAB. Therefore,
when run-time error checks are enabled, an error can occur.

For example, suppose that X is a variable-size matrix with dimensions 1x:3x:5. In the generated
code, sum(X) behaves like sum (X, 2). In MATLAB, sum(X) behaves like sum(X,2) unless
size(X,2) is 1. In MATLAB, when size(X,2) is 1, sum(X) behaves like sum(X, 3).

To avoid this issue, specify the intended working dimension explicitly as a constant value. For
example, sum(X,2).

mtimes No Dynamic Scalar Expansion

The generated code performs a general matrix multiplication.
If a variable-size matrix operand becomes a scalar at run
time, dimensions must still agree. There will not be an
automatic switch to scalar multiplication.

Consider the multiplication A*B. If the code generator is aware that A is scalar and B is a matrix, the
code generator produces code for scalar-matrix multiplication. However, if the code generator is
aware that A and B are variable-size matrices, it produces code for a general matrix multiplication. At
run time, if A turns out to be scalar, the generated code does not change its behavior. Therefore,
when run-time error checks are enabled, a size mismatch error can occur.
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Matrix-Matrix Indexing

For indexing a matrix with a matrix, matrixl(matrix2), the
code generator assumed that the result would have the same
size as matrix2. If matrixl and matrix2 are vectors at run
time, their orientations must match.

In matrix-matrix indexing, you use one matrix to index into another matrix. In MATLAB, the general
rule for matrix-matrix indexing is that the size and orientation of the result match the size and
orientation of the index matrix. For example, if A and B are matrices, size (A(B)) equals size(B).
When A and B are vectors, MATLAB applies a special rule. The special vector-vector indexing rule is
that the orientation of the result is the orientation of the data matrix. For example, if A is 1-by-5 and B
is 3-by-1, then A(B) is 1-by-3.

The code generator applies the same matrix-matrix indexing rules as MATLAB. If A and B are
variable-size matrices, to apply the matrix-matrix indexing rules, the code generator assumes that
size(A(B)) equals size(B). If, at run time, A and B become vectors and have different
orientations, then the assumption is incorrect. Therefore, when run-time error checks are enabled, an
erTor can occur.

To avoid this issue, force your data to be a vector by using the colon operator for indexing. For
example, suppose that your code intentionally toggles between vectors and regular matrices at run
time. You can do an explicit check for vector-vector indexing.

if isvector(A) && isvector(B)

C=A(:);

D = C(B(:));
else

D = A(B);
end

The indexing in the first branch specifies that C and B( : ) are compile-time vectors. Therefore, the
code generator applies the indexing rule for indexing one vector with another vector. The orientation
of the result is the orientation of the data vector, C.

Vector-Vector Indexing

For indexing a vector with a vector, vectorl(vector2), the
code generator assumed that the result would have the same
orientation as vectorl. If vectorl is a scalar at run time,
the orientation of vector2 must match vectorl.

In MATLAB, the special rule for vector-vector indexing is that the orientation of the result is the
orientation of the data vector. For example, if A is 1-by-5 and B is 3-by-1, then A(B) is 1-by-3. If,
however, the data vector A is a scalar, then the orientation of A(B) is the orientation of the index
vector B.

The code generator applies the same vector-vector indexing rules as MATLAB. If A and B are variable-
size vectors, to apply the indexing rules, the code generator assumes that the orientation of B
matches the orientation of A. At run time, if A is scalar and the orientation of A and B do not match,
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then the assumption is incorrect. Therefore, when run-time error checks are enabled, a run-time
€ITor can OCCUr.

To avoid this issue, make the orientations of the vectors match. Alternatively, index single elements by
specifying the row and column. For example, A(row, column).

Loop Index Overflow

The generated code assumes the loop index does not overflow on
the last iteration of the loop. If the loop index overflows,
an infinite loop can occur.

Suppose that a for-loop end value is equal to or close to the maximum or minimum value for the loop
index data type. In the generated code, the last increment or decrement of the loop index might
cause the index variable to overflow. The index overflow might result in an infinite loop.

When memory integrity checks are enabled, if the code generator detects that the loop index might
overflow, it reports an error. The software error checking is conservative. It might incorrectly report a
loop index overflow. By default, memory-integrity checks are enabled for MEX code and disabled for
standalone C/C++ code. See “Why Test MEX Functions in MATLAB?” on page 26-2 and “Generate
Standalone C/C++ Code That Detects and Reports Run-Time Errors” on page 29-20.

To avoid a loop index overflow, use the workarounds in this table.

Loop Conditions Causing the Potential Workaround

Overflow

* The loop index increments by 1. If the loop does not have to cover the full range of

« The end value equals the maximum value of the integer type, rewrite the loop so that the end
the integer type. value is not equal to the maximum value of the

integer type. For example, replace:

N=intmax('intl6"')

for k=N-10:N
with:
for k=1:10
* The loop index decrements by 1. If the loop does not have to cover the full range of
« The end value equals the minimum value of the integer type, rewrite the loop so that the end
the integer type. value is not equal to the minimum value of the

integer type. For example, replace:

N=intmin('int32"')
for k=N+10:-1:N

with:

for k=10:-1:1
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Loop Conditions Causing the Potential
Overflow

Workaround

The loop index increments or decrements by
1.

The start value equals the minimum or
maximum value of the integer type.

The end value equals the maximum or
minimum value of the integer type.

If the loop must cover the full range of the
integer type, cast the type of the loop start, step,
and end values to a bigger integer or to double.
For example, rewrite:

M= intmin('int16');
N= intmax('intl6');
for k=M:N

% Loop body
end

as:

M= intmin('int16');

N= intmax('intl6');

for k=int32(M):int32(N)
% Loop body

end

The loop index increments or decrements by a
value not equal to 1.

On the last loop iteration, the loop index is not
equal to the end value.

Rewrite the loop so that the loop index in the last
loop iteration is equal to the end value.

See Also

More About
“Potential Differences Reporting” on page 2-20

“Differences Between Generated Code and MATLAB Code” on page 2-6

“Incompatibilities with MATLAB in Variable-Size Support for Code Generation” on page 6-15
“Why Test MEX Functions in MATLAB?” on page 26-2

“Generate Standalone C/C++ Code That Detects and Reports Run-Time Errors” on page 29-20

2-25



2 Design Considerations for C/C++ Code Generation

MATLAB Language Features Supported for C/C++ Code
Generation

MATLAB Features That Code Generation Supports

Code generation from MATLAB code supports many major language features including:

* n-dimensional arrays (see “Array Size Restrictions for Code Generation” on page 5-13)
* matrix operations, including deletion of rows and columns
» variable-size data (see “Code Generation for Variable-Size Arrays” on page 6-2)

* subscripting (see “Incompatibility with MATLAB in Matrix Indexing Operations for Code
Generation” on page 6-19)

* complex numbers (see “Code Generation for Complex Data” on page 5-8)
* numeric classes (see “Supported Variable Types” on page 4-13)

* double-precision, single-precision, and integer math

* enumerations (see “Code Generation for Enumerations” on page 14-2)

+ fixed-point arithmetic

* program control statements if, switch, for, while, and break

+ arithmetic, relational, and logical operators

* local functions

* persistent variables

* global variables (see “Specify Global Variable Type and Initial Value Using the App” on page 24-
26)

* structures (see “Structure Definition for Code Generation” on page 7-2)

* cell arrays (see “Cell Arrays”)

+ tables (see “Code Generation for Tables” on page 12-2)

+ timetables (see “Code Generation for Timetables” on page 13-2)

» characters (see “Encoding of Characters in Code Generation” on page 5-12)

* string scalars (see “Code Generation for Strings” on page 5-16)

* categorical arrays (see “Code Generation for Categorical Arrays” on page 8-2)

* datetime arrays (see “Code Generation for Datetime Arrays” on page 10-2)

* duration arrays (see “Code Generation for Duration Arrays” on page 11-2)

* sparse matrices (see “Code Generation for Sparse Matrices” on page 5-19)

» function handles (see “Function Handle Limitations for Code Generation” on page 17-2)
* anonymous functions (see “Code Generation for Anonymous Functions” on page 19-8)
* recursive functions (see “Code Generation for Recursive Functions” on page 20-12)

* nested functions (see “Code Generation for Nested Functions” on page 19-9)

* variable length input and output argument lists (see “Code Generation for Variable Length
Argument Lists” on page 19-2)

+ input argument validation (see “Generate Code for arguments Block That Validates Input
Arguments” on page 19-3)
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subset of MATLAB toolbox functions (see “Functions and Objects Supported for C/C++ Code
Generation” on page 3-2)

subset of functions and System objects in several toolboxes (see “Functions and Objects
Supported for C/C++ Code Generation” on page 3-2)

function calls (see “Resolution of Function Calls for Code Generation” on page 20-2)
class aliasing
MATLAB classes (see “MATLAB Classes Definition for Code Generation” on page 15-2)

MATLAB Language Features That Code Generation Does Not Support

Code generation from MATLAB does not support the following frequently used MATLAB features (this
list is not exhaustive):

scripts

GPU arrays

MATLAB Coder does not support GPU arrays. However, if you have GPU Coder™, you can
generate CUDA® MEX code that takes GPU array inputs.
calendarDuration arrays

Java

Map containers

time series objects

tall arrays

try/catch statements

import statements

pattern arrays

output argument validation
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Functions and Objects Supported for C/C++ Code Generation

3-2

You can generate efficient C/C++ code for a subset of MATLAB built-in functions and toolbox
functions and System objects that you call from MATLAB code.

These functions and System objects are listed in the following tables. In these tables, a B icon
before the name of a function or a System object indicates that there are specific usage notes and
limitations related to C/C++ code generation for that function or System object. To view these usage
notes and limitations, in the corresponding reference page, scroll down to the Extended
Capabilities section at the bottom and expand the C/C++ Code Generation section.

* Functions and Objects Supported for C/C++ Code Generation (Category List)

* Functions and Objects Supported for C/C++ Code Generation (Alphabetical List)

See Also

More About
. “MATLAB Language Features Supported for C/C++ Code Generation” on page 2-26



Defining MATLAB Variables for C/C++
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* “Variables Definition for Code Generation” on page 4-2

* “Best Practices for Defining Variables for C/C++ Code Generation” on page 4-3
* “Eliminate Redundant Copies of Variables in Generated Code” on page 4-7

* “Reassignment of Variable Properties” on page 4-9

* “Reuse the Same Variable with Different Properties” on page 4-10

* “Supported Variable Types” on page 4-13

+ “Edit and Represent Coder Type Objects and Properties” on page 4-14
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Variables Definition for Code Generation

4-2

In the MATLAB language, variables can change their properties dynamically at run time so you can
use the same variable to hold a value of any class, size, or complexity. For example, the following code
works in MATLAB:

function x = foo(c) %#codegen

if(c>0)
X = 0;
else
x = [1 2 3];
end
disp(x);
end

However, statically-typed languages like C must be able to determine variable properties at compile
time. Therefore, for C/C++ code generation, you must explicitly define the class, size, and complexity
of variables in MATLAB source code before using them. For example, rewrite the above source code
with a definition for x:

function x = foo(c) %#codegen
X = zeros(1,3);

if(c>0)
X = 0;
else
x = [1 2 3];
end
disp(x);
end

For more information, see “Best Practices for Defining Variables for C/C++ Code Generation” on
page 4-3.
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Best Practices for Defining Variables for C/C++ Code
Generation

In this section...

“Define Variables By Assignment Before Using Them” on page 4-3
“Use Caution When Reassigning Variables” on page 4-5

“Use Type Cast Operators in Variable Definitions” on page 4-5
“Define Matrices Before Assigning Indexed Variables” on page 4-5

“Index Arrays by Using Constant Value Vectors” on page 4-5

Define Variables By Assignment Before Using Them

For C/C++ code generation, you should explicitly and unambiguously define the class, size, and
complexity of variables before using them in operations or returning them as outputs. Define
variables by assignment, but note that the assignment copies not only the value, but also the size,
class, and complexity represented by that value to the new variable. For example:

Assignment: Defines:

a=14.7; a as a real double scalar.

b = a; b with properties of a (real double scalar).
c = zeros(5,2); C as a real 5-by-2 array of doubles.
d=[12345; 67 89 0]; d as a real 5-by-2 array of doubles.

y = intl16(3); y as a real 16-bit integer scalar.

Define properties this way so that the variable is defined on the required execution paths during C/C
++ code generation.

The data that you assign to a variable can be a scalar, matrix, or structure. If your variable is a
structure, define the properties of each field explicitly.

Initializing the new variable to the value of the assigned data sometimes results in redundant copies
in the generated code. To avoid redundant copies, you can define variables without initializing their
values by using the coder.nullcopy construct as described in “Eliminate Redundant Copies of
Variables in Generated Code” on page 4-7.

When you define variables, they are local by default; they do not persist between function calls. To
make variables persistent, see persistent.

Example 4.1. Defining a Variable for Multiple Execution Paths

Consider the following MATLAB code:

ifc>0
x = 11;
end
% Later in your code ...
ifc>0
use(x);
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end

Here, x is assigned only if ¢ > 0 and used only when ¢ > 0. This code works in MATLAB, but
generates a compilation error during code generation because it detects that x is undefined on some
execution paths (when ¢ <= 0).

To make this code suitable for code generation, define x before using it:
X = 0;

if c>0
x = 11;
end
% Later in your code ...
if c>0
use(x);
end

Example 4.2. Defining Fields in a Structure

Consider the following MATLAB code:

if ¢ >0

s.a = 11;
disp(s);
else
s.a = 12;
s.b = 12;
end
% Try to use s
use(s);

Here, the first part of the if statement uses only the field a, and the else clause uses fields a and b.
This code works in MATLAB, but generates a compilation error during C/C++ code generation
because it detects a structure type mismatch. To prevent this error, do not add fields to a structure
after you perform certain operations on the structure. For more information, see “Structure
Definition for Code Generation” on page 7-2.

To make this code suitable for C/C++ code generation, define all fields of s before using it.

% Define all fields in structure s
s = struct(‘a’,0, ‘b’, 0);
if ¢ >0
s.a = 11;
disp(s);
else
s.a = 12;
s.b = 12;
end
% Use s
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Use Caution When Reassigning Variables

In general, you should adhere to the "one variable/one type" rule for C/C++ code generation; that is,
each variable must have a specific class, size and complexity. Generally, if you reassign variable
properties after the initial assignment, you get a compilation error during code generation, but there
are exceptions, as described in “Reassignment of Variable Properties” on page 4-9.

Use Type Cast Operators in Variable Definitions

By default, constants are of type double. To define variables of other types, you can use type cast
operators in variable definitions. For example, the following code defines variable y as an integer:

15; %
uint8(

is of type double by default.
); % y has the value of x, but cast to uint8.

X
X
Define Matrices Before Assigning Indexed Variables

When generating C/C++ code from MATLAB, you cannot grow a variable by writing into an element
beyond its current size. Such indexing operations produce run-time errors. You must define the
matrix first before assigning values to its elements.

For example, the following initial assignment is not allowed for code generation:

g(3,2) = 14.6; ot allowed for creating g

% N

% 0K for assigning value once created

For more information about indexing matrices, see “Incompatibility with MATLAB in Matrix Indexing
Operations for Code Generation” on page 6-19.

Index Arrays by Using Constant Value Vectors

It is a best practice to use constant value vectors to index arrays instead of using ranges that contain
nonconstant objects.

In some cases, the code generator is unable to determine whether an expression containing the
colon operator is fixed-size or variable-size. Use constant value vectors to index arrays to prevent
them from being unnecessarily created as variable-size arrays in the generated code.

For example, the array out has been created by using the variable i indexed through the random
row vector A.

% extract elements i through i+5 for processing
A = rand(1,10);
out = A(i:i+5); % If i is unknown at compile time, out is variable-size

If i is a compile-time constant value, the code generator produces a fixed-size object for out. If i is
unknown at compile time, the code generator produces a variable-size array for out in the generated
code.
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To prevent the code generator from creating variable-size arrays, the previous code snippet is
rewritten in this pattern:

% extract elements i through i+5 for processing
A = rand(1,10);
out = A (i+(0:5)); % out is fixed-size, even if i is unknown at compile time

This pattern enables you to generate fixed-size arrays that have iterator values unknown at compile-
time. Another example of the recommended rewrite is:

width = 25;

A = A(j-width:j+width); % A is variable-size, if j is unknown at compile time

fsA = A(j+(-width:width)); % This makes A fixed-size, even if j is unknown at compile time
See Also

coder.nullcopy | persistent

More About

. “Eliminate Redundant Copies of Variables in Generated Code” on page 4-7

. “Structure Definition for Code Generation” on page 7-2

. “Incompatibility with MATLAB in Matrix Indexing Operations for Code Generation” on page 6-
19

. “Avoid Data Copies of Function Inputs in Generated Code” on page 35-6
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Eliminate Redundant Copies of Variables in Generated Code

In this section...

“When Redundant Copies Occur” on page 4-7
“How to Eliminate Redundant Copies by Defining Uninitialized Variables” on page 4-7

“Defining Uninitialized Variables” on page 4-7

When Redundant Copies Occur

During C/C++ code generation, the code generator checks for statements that attempt to access
uninitialized memory. If it detects execution paths where a variable is used but is potentially not
defined, it generates a compile-time error. To prevent these errors, define variables by assignment
before using them in operations or returning them as function outputs.

Note, however, that variable assignments not only copy the properties of the assigned data to the new
variable, but also initialize the new variable to the assigned value. This forced initialization
sometimes results in redundant copies in C/C++ code. To eliminate redundant copies, define
uninitialized variables by using the coder.nullcopy function, as described in “How to Eliminate
Redundant Copies by Defining Uninitialized Variables” on page 4-7.

How to Eliminate Redundant Copies by Defining Uninitialized
Variables

Define the variable with coder.nullcopy.
2  Initialize the variable before reading it.

When the uninitialized variable is an array, you must initialize all of its elements before passing
the array as an input to a function or operator — even if the function or operator does not read
from the uninitialized portion of the array.

What happens if you access uninitialized data?

Uninitialized memory contains arbitrary values. Therefore, accessing uninitialized data may lead
to segmentation violations or nondeterministic program behavior (different runs of the same
program may yield inconsistent results).

Defining Uninitialized Variables

In the following code, the assignment statement X = zeros(1,N) not only defines X to be a 1-by-5
vector of real doubles, but also initializes each element of X to zero.

function X = withoutNullcopy S#codegen

=5;

= zeros(1,N);

or i = 1:N

if mod(i,2) == 0
X(i) = 1i;

elseif mod(i,2) ==1
X(i) = 0;

—h X 2
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end
end

This forced initialization creates an extra copy in the generated code. To eliminate this overhead, use
coder.nullcopy in the definition of X:

function X = withNullcopy %#codegen

5;

coder.nullcopy(zeros(1,N));

i=1:N

if mod(i,2) ==
X(1i) = i;

else

—h X =2
o
S onn

end

See Also
coder.nullcopy

More About

. “Avoid Data Copies of Function Inputs in Generated Code” on page 35-6
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Reassignment of Variable Properties

For C/C++ code generation, there are certain variables that you can reassign after the initial
assignment with a value of different class, size, or complexity:

Dynamically sized variables

A variable can hold values that have the same class and complexity but different sizes. If the size of
the initial assignment is not constant, the variable is dynamically sized in generated code. For more
information, see “Variable-Size Data”.

Variables reused in the code for different purposes

You can reassign the type (class, size, and complexity) of a variable after the initial assignment if each
occurrence of the variable can have only one type. In this case, the variable is renamed in the
generated code to create multiple independent variables. For more information, see “Reuse the Same
Variable with Different Properties” on page 4-10.
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Reuse the Same Variable with Different Properties
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In this section...

“When You Can Reuse the Same Variable with Different Properties” on page 4-10
“When You Cannot Reuse Variables” on page 4-10
“Limitations of Variable Reuse” on page 4-11

For C/C++ code generation, there are certain variables that you can reassign after the initial
assignment with a value of different class, size, or complexity. A variable can hold values that have
the same class and complexity but different sizes. If the size of the initial assignment is not constant,
the variable is dynamically sized in generated code. For more information, see “Variable-Size Data”.

You can reassign the type (class, size, and complexity) of a variable after the initial assignment if each
occurrence of the variable can have only one type. In this case, the variable is renamed in the
generated code to create multiple independent variables.

When You Can Reuse the Same Variable with Different Properties

You can reuse (reassign) an input, output, or local variable with different class, size, or complexity if
the code generator can unambiguously determine the properties of each occurrence of this variable
during C/C++ code generation. If so, MATLAB creates separate uniquely named local variables in the
generated code. You can view these renamed variables in the code generation report.

A common example of variable reuse is in if-elseif-else or switch-case statements. For
example, the following function examplel first uses the variable t in an if statement, where it holds
a scalar double, then reuses t outside the if statement to hold a vector of doubles.

function y = examplel(u) S#codegen
if all(all(u>0))

[}

% First, t is used to hold a scalar double value
t = mean(mean(u)) / numel(u);
u=u - t;

end

% t is reused to hold a vector of doubles

t = find(u > 0);

y = sum(u(t(2:end-1)));

When You Cannot Reuse Variables

You cannot reuse (reassign) variables if it is not possible to determine the class, size, and complexity
of an occurrence of a variable unambiguously during code generation. In this case, variables cannot
be renamed and a compilation error occurs.

For example, the following example2 function assigns a fixed-point value to x in the if statement
and reuses x to store a matrix of doubles in the else clause. It then uses x after the if-else
statement. This function generates a compilation error because after the if-else statement,
variable x can have different properties depending on which if-else clause executes.

function y = example2(use fixpoint, data) %#codegen
if use fixpoint
% x is fixed-point
x = fi(data, 1, 12, 3);



Reuse the Same Variable with Different Properties
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lse
% X 1is a matrix of doubles

x = data;
nd
When x is reused here, it is not possible to determine its
class, size, and complexity
= sum(sum(x));
=t >0;

Example 4.3. Variable Reuse in an if Statement

To see how MATLAB renames a reused variable t:

1

Name

Create a MATLAB file examplel.m containing the following code.

function y = examplel(u) S%#codegen
if all(all(u>0))

% First, t is used to hold a scalar double value
t = mean(mean(u)) / numel(u);
u=u - t;

end

% t is reused to hold a vector of doubles

t = find(u > 0);

y = sum(u(t(2:end-1)));

end
Generate a MEX function for examplel and produce a code generation report.

codegen -o examplelx -report examplel.m -args {ones(5,5)}
Open the code generation report.

On the Variables tab, you see two uniquely named local variables t>1 and t>2.

Type Size Class
Output 1=1 double
Input 5=5 double
Local 1=1 double
Local 25 =1 double

In the list of variables, click t>1. The report highlights the instances of the variable t that are
inside of the if statement. These instances of t are scalar double.

Click t>2. The code generation report highlights the instances of t that are outside of the if
statement. These instances of t are variable-size column vectors with an upper bound of 25.

Limitations of Variable Reuse

The following variables cannot be renamed in generated code:

Persistent variables.
Global variables.
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Variables passed to C code using coder. ref, coder.rref, coder.wref.
Variables whose size is set using coder.varsize.

Variables whose names are controlled using coder.cstructname, when generating code by
using MATLAB Coder.

The index variable of a for-loop when it is used inside the loop body.
The block outputs of a MATLAB Function block in a Simulink model.
Chart-owned variables of a MATLAB function in a Stateflow® chart.
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Supported Variable Types

You can use the following data types for C/C++ code generation from MATLAB:

Type Description

char Character array

complex Complex data. Cast function takes real and imaginary components
double Double-precision floating point
int8, intl6, int32, Signed integer

int64

logical Boolean true or false
single Single-precision floating point
struct Structure

uint8, uintl6, uint32, |[Unsigned integer

uinte4

Fixed-point Fixed-point data types
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Edit and Represent Coder Type Objects and Properties
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Passing an object to coder. typeof or passing a class name as a string scalar to coder.newtype
creates an object that represents the type of object for code generation.

The coder type object displays a succinct description of the object properties while excluding internal
state values. Nonconstant properties display their type and size, while constant properties display
only their values.

To create a coder type object, pass a compatible object to coder.typeof. For example:

t = categorical({'r','g','b'});
tType = coder.typeof(t)

The representation of variable t is stored in coder type object tType.
tType =

matlab.coder.type.CategoricalType
1x3 categorical
Categories : 3x1 homogeneous cell
Ordinal : 1x1 logical
Protected : 1x1 logical

Object Properties

You can edit the properties of coder type objects. You can assign scalar values to the object
properties. Values are implicitly converted to the corresponding coder type values when they are
assigned to coder type object properties. The code generator implicitly converts constants assigned
to coder type object properties to coder.Constant values. You can resize objects themselves

Resize Objects by Using coder.resize

You can resize most objects by using coder. resize. You can resize objects, its properties and create
arrays within the properties.

For example, for a timetable coder object, you can resize the object:

t = timetable((1:5)"',(11:15)"', 'SampleRate',1);
tType coder.typeof(t);
tType coder.resize(tType, [10 2],[1 0])

This code resizes the timetable to a : 10x2 object.
tType =

matlab.coder.type.RegularTimetableType
:10x2 timetable
Data : 1x2 homogeneous cell
Description : 1x0 char
UserData : 0x0 double
DimensionNames : {'Time'} {'Variables'}
VariableNames : {'Varl'} {'Var2'}
VariableDescriptions : 1x2 homogeneous cell
VariableUnits : 1x2 homogeneous cell
VariableContinuity : 1x2 matlab.internal.coder.tabular.Continuity
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StartTime : 1x1 matlab.coder.type.DurationType
SampleRate : 1x1 double
TimeStep : 1x1 matlab.coder.type.DurationType

The constant properties of tType display their values. The nonconstant properties display only their
type and size.

Note Not all types representing MATLAB classes are compatible with coder. resize.

Resize Objects by Editing Object Properties

You can resize the objects by editing the properties themselves. For a duration coder type object x,
edit the Size property to change the size as needed.

x = coder.typeof(duration((1:3),0,0));
X.Size = [10 10]

This code changes the size of the coder type object.
X =

matlab.coder.type.DurationType
10x10 duration
Format : 1x8 char

You can also make the coder type object variable-size by setting the VarDims flag:

x.VarDims(2) = true

The second dimension of the coder type object is upper-bounded at 10.
X =

matlab.coder.type.DurationType
10x:10 duration
Format : 1x8 char

Legacy Representation of Coder Type Objects

In R2021a, calling coder. typeof no longer returns a coder.ClassType object. If your workflow
requires the legacy representation of coder type objects, use the getCoderType function on the
variable that has the new representation of your class or object. For example, to get the legacy
representation of a datetime variable, use the variable that has the new representation tt to call
the getCoderType function:

t = datetime;
tt = coder.typeof(t);
ttLegacy = tt.getCoderType()

In the Coder Type Editor, the code generator includes the function getCoderType for coder type
objects. Use this function to return the legacy representation of coder types. See, “Create and Edit
Input Types by Using the Coder Type Editor” on page 27-72

Certain MATLAB data types provide customized type representations for MATLAB code generation. In
other cases, the type is represented using coder.ClassType.
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See Also
coder.resize | coder.newtype | coder.typeof | “Code Generation for Variable-Size Arrays” on
page 6-2
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* “Data Definition Considerations for Code Generation” on page 5-2

* “Code Generation for Complex Data” on page 5-8

* “Encoding of Characters in Code Generation” on page 5-12

* “Array Size Restrictions for Code Generation” on page 5-13

* “Code Generation for Constants in Structures and Arrays” on page 5-14
* “Code Generation for Strings” on page 5-16

* “Define String Scalar Inputs” on page 5-17

* “Code Generation for Sparse Matrices” on page 5-19

* “Specify Array Layout in Functions and Classes” on page 5-22

* “Code Design for Row-Major Array Layout” on page 5-26
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Data Definition Considerations for Code Generation

To generate efficient standalone code, you must define the following types and classes of data
differently from when you run your code in MATLAB.

Data

Type Considerations

More Information

Arrays

Maximum number of elements is
restricted.

“Array Size Restrictions for
Code Generation” on page 5-13

Numeric types

Assign numeric type variables a
value before using them in
operations or returning them as
outputs.

“Best Practices for Defining
Variables for C/C++ Code
Generation” on page 4-3

Complex numbers

* Set complexity of variables
at the time of assignment
and before first use.

* Expressions containing a
complex number or variable
evaluate to a complex result,
even if the imaginary part of
the result is zero.

“Code Generation for Complex
Data” on page 5-8

Characters and strings

e Characters are restricted to
8 bits of precision.

» For code generation, string
scalars do not support global
variables, indexing with
curly braces, missing values,
or size changes by using the
function coder.varsize.

“Encoding of Characters in
Code Generation” on page 5-
12

* “Code Generation for
Strings” on page 5-16

Variable-Size data

After initial fixed-size
assignment to a variable,
attempts to grow the variable
might cause a compilation error.

* “Code Generation for
Variable-Size Arrays” on
page 6-2

» “Define Variable-Size Data
for Code Generation” on
page 6-8

Structures

* Assign fields to structures in
the same order on each
control path.

* Assign corresponding fields
in the structure array
elements with same size,
type, and complexity.

e “Define Scalar Structures for
Code Generation” on page 7-
4

“Define Arrays of Structures
for Code Generation” on
page 7-6
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Data

Type Considerations

More Information

Cell arrays

* Assign all cell array elements
before passing the cell array
to a function or returning it
from a function.

* Variable-size cell array
elements must all have the
same size, type, and
complexity.

“Code Generation for Cell
Arrays” on page 9-2

* “Cell Array Limitations for
Code Generation” on page 9-
8

Tables

*  You must specify variable
names by using the
'‘VariableNames' name-
value argument when
creating tables from input
arrays.

* Limited data type support
when you preallocate a table
by using the table function
and the 'Size' name-value
argument.

» Table indices that specify
variables must be compile
time constant.

* You cannot change the size
of a table by assignments.

* You cannot change the
VariableNames,
RowNames,
DimensionNames, or
UserData properties of a
table after you create it.

Limitations that apply to classes
also apply to tables.

“Code Generation for Tables”
on page 12-2

+ “Table Limitations for Code
Generation” on page 12-8

Categorical arrays

Categorical arrays do not
support these inputs and
operations:

* Arrays of MATLAB objects
* Sparse matrices

* Duplicate category names
* Growth by assignment

* Adding a category

* Deleting an element

Limitations that apply to classes
also apply to categorical arrays.

* “Code Generation for
Categorical Arrays” on page
8-2
“Categorical Array
Limitations for Code
Generation” on page 8-9
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Data

Type Considerations

More Information

Datetime arrays

datetime arrays do not support
these inputs and operations:
o Text inputs

¢ The 'Format' name-value
argument

e The 'TimeZone' name-value
argument and the
'TimeZone' property

* Setting time component
properties

* Growth by assignment
* Deleting an element

Limitations that apply to classes
also apply to datetime arrays.

“Code Generation for
Datetime Arrays” on page
10-2

“Datetime Array Limitations
for Code Generation” on
page 10-7

Duration arrays

Duration arrays do not support
these inputs and operations:

o Text inputs

* Growth by assignment

* Deleting an element

* Converting duration values
to text by using
char,cellstr, or string
functions

Limitations that apply to classes
also apply to duration arrays.

“Code Generation for
Duration Arrays” on page 11-
2

“Duration Array Limitations
for Code Generation” on
page 11-8
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Data

Type Considerations

More Information

Timetables

Limitations that apply to classes

You must specify variable
names by using the
'VariableNames' name-
value argument when
creating timetables from
input arrays.

Limited data type support
when you preallocate a table
by using the timetable
function and the 'Size'
name-value argument.

Timetable indices that
specify variables must be
compile time constant.

You cannot change the size
of a timetable by
assignments.

You cannot change the
VariableNames,
DimensionNames, or
UserData properties of a
timetable after you create it.

If you create a regular
timetable, and you attempt
to set irregular row times,
then an error is produced.

If you create an irregular
timetable, then it remains
irregular even if you set its
sample rate or time step.

also apply to timetables.

“Code Generation for
Timetables” on page 13-2

“Timetable Limitations for
Code Generation” on page
13-9

Enumerated data

Supports integer-based
enumerated types only.

“Enumerations”
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Data

Type Considerations

More Information

MATLAB Classes

Before generating code, it is
a best practice to test class
property validation by
running a MEX function over
the full range of input values.

If a property does not have
an explicit initial value, the
code generator assumes that
it is undefined at the
beginning of the constructor.
The code generator does not
assign an empty matrix as
the default.

The coder.varsize
function is not supported for
class properties.

If the initial value of a
property is an object, then
the property must be
constant. To make a property
constant, declare the
Constant attribute in the
property block.

* “Generate C++ Classes for
MATLAB Classes” on page
16-2

» “MATLAB Classes Definition
for Code Generation” on
page 15-2

Function handles

Assigning different function
handles to the same variable
can cause a compile-time
error.

You cannot pass function
handles to or from entry-
point functions or extrinsic
functions.

You cannot view function
handles from the MATLAB
Function Block debugger.

“Function Handles”
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Data Type Considerations More Information

Deep learning arrays dlarrays do not support these “Code Generation for
inputs and operations: dlarray” on page 18-2

* “dlarray Limitations for Code

* The data format argument T e —

must be a compile-time
constant

* Define dlarray variables
inside the entry-point
function.

* The input to a dlarray must
be fixed-size.

* Code generation does not
support creating a dlarray
type object by using the
coder.typeof function
with upper bound size and
variable dimensions
specified.

The information in the preceding table is not an exhaustive list of considerations for each data type.
See the topics in the More Information column.

See Also

Related Examples

. “Best Practices for Defining Variables for C/C++ Code Generation” on page 4-3
. “Reuse the Same Variable with Different Properties” on page 4-10
. “Eliminate Redundant Copies of Variables in Generated Code” on page 4-7
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Code Generation for Complex Data

In this section...

“Restrictions When Defining Complex Variables” on page 5-8
“Code Generation for Complex Data with Zero-Valued Imaginary Parts” on page 5-8
“Results of Expressions That Have Complex Operands” on page 5-11

“Results of Complex Multiplication with Nonfinite Values” on page 5-11

Restrictions When Defining Complex Variables

For code generation, you must set the complexity of variables at the time of assignment. Assign a
complex constant to the variable or use the complex function. For example:

5+ 61i; % x is a complex number by assignment.

X X
complex(5,6); % y is the complex number 5 + 61i.

y

After assignment, you cannot change the complexity of a variable. Code generation for the following
function fails because x (k) = 3 + 41i changes the complexity of x.

function x = testl( )
X = zeros(3,3); % x is real
for k = 1l:numel(x)
x(k) = 3 + 4i;
end
end

To resolve this issue, assign a complex constant to X.

function x = testl( )
X = zeros(3,3)+ 0i; %x is complex
for k = 1l:numel(x)
x(k) = 3 + 4i;
end
end

Code Generation for Complex Data with Zero-Valued Imaginary Parts

For code generation, complex data that has all zero-valued imaginary parts remains complex. This
data does not become real. This behavior has the following implications:

* In some cases, results from functions that sort complex data by absolute value can differ from the
MATLAB results. See “Functions That Sort Complex Values by Absolute Value” on page 5-8.

* For functions that require that complex inputs are sorted by absolute value, complex inputs with
zero-valued imaginary parts must be sorted by absolute value. These functions include ismember,
union, intersect, setdiff, and setxor.

Functions That Sort Complex Values by Absolute Value

Functions that sort complex values by absolute value include sort, issorted, sortrows, median,
min, and max. These functions sort complex numbers by absolute value even when the imaginary
parts are zero. In general, sorting the absolute values produces a different result than sorting the real
parts. Therefore, when inputs to these functions are complex with zero-valued imaginary parts in
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generated code, but real in MATLAB, the generated code can produce different results than MATLAB.
In the following examples, the input to sort is real in MATLAB, but complex with zero-valued
imaginary parts in the generated code:

* You Pass Real Inputs to a Function Generated for Complex Inputs

1

Write this function:

function myout = mysort(A)
myout = sort(A);
end

Call mysort in MATLAB.

A= -2:2;
mysort(A)
ans =
-2 -1 0 1 2

Generate a MEX function for complex inputs.

A= -2:2;
codegen mysort -args {complex(A)} -report

Call the MEX Function with real inputs.
mysort mex(A)
ans =

0 1 -1 2 -2

You generated the MEX function for complex inputs, therefore, it treats the real inputs as
complex numbers with zero-valued imaginary parts. It sorts the numbers by the absolute
values of the complex numbers. Because the imaginary parts are zero, the MEX function
returns the results to the MATLAB workspace as real numbers. See “Inputs and Outputs for
MEX Functions Generated for Complex Arguments” on page 5-10.

* Input to sort Is Output from a Function That Returns Complex in Generated Code

1

Write this function:

function y = myfun(A)
x = eig(A);
y = sort(x, 'descend');

The output from eig is the input to sort. In generated code, eig returns a complex result.
Therefore, in the generated code, x is complex.

Call myfun in MATLAB.

A=1[235;0655;674];
myfun(A)

ans =
12.5777

2.0000
-3.5777
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Name
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The result of eig is real. Therefore, the inputs to sort are real.

3  Generate a MEX function for complex inputs.

codegen myfun -args {complex(A)}
4 Call the MEX function.

myfun_mex(A)
ans =
12.5777

-3.5777
2.0000

In the MEX function, eig returns a complex result. Therefore, the inputs to sort are
complex. The MEX function sorts the inputs in descending order of the absolute values.

Inputs and Outputs for MEX Functions Generated for Complex Arguments

For MEX functions created by the codegen command, the fiaccel command, or the MATLAB Coder
app:

Suppose that you generate the MEX function for complex inputs. If you call the MEX function with
real inputs, the MEX function transforms the real inputs to complex values with zero-valued
imaginary parts.

If the MEX function returns complex values that have all zero-valued imaginary parts, the MEX
function returns the values to the MATLAB workspace as real values. For example, consider this
function:

function y = foo()

y =1+ 01i; % y is complex with imaginary part equal to zero
end

If you generate a MEX function for foo and view the code generation report, you see that y is
complex.

codegen foo -report

Type Size Class
Output 1=1 complex double

If you run the MEX function, you see that in the MATLAB workspace, the result of foo_mex is the
real value 1.

z = foo_mex

ans =
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Results of Expressions That Have Complex Operands

In general, expressions that contain one or more complex operands produce a complex result in
generated code, even if the value of the result is zero. Consider the following line of code:

zZ=X+Y;

Suppose that at run time, x has the value 2 + 3i and y has the value 2 - 3i.In MATLAB, this code
produces the real result z = 4. During code generation, the types for x and y are known, but their
values are not known. Because either or both operands in this expression are complex, z is defined as
a complex variable requiring storage for a real and an imaginary part. z equals the complex result 4
+ 01 in generated code, not 4, as in MATLAB code.

Exceptions to this behavior are:

* When the imaginary parts of complex results are zero, MEX functions return the results to the
MATLAB workspace as real values. See “Inputs and Outputs for MEX Functions Generated for
Complex Arguments” on page 5-10.

*  When the imaginary part of the argument is zero, complex arguments to extrinsic functions are
real.

function y = foo()
coder.extrinsic('sqrt"')
x =1+ 0i; % x 1s complex
y = sqrt(x); % x is real, y is real

end
* Functions that take complex arguments but produce real results return real values.

y = real(x); % y is the real part of the complex number x.
y = imag(x); % y is the real-valued imaginary part of x.
y = isreal(x); % y is false (0) for a complex number x.

* Functions that take real arguments but produce complex results return complex values.

z = complex(x,y); % z is a complex number for a real x and y.

Results of Complex Multiplication with Nonfinite Values

When an operand of a complex multiplication contains a nonfinite value, the generated code might
produce a different result than the result that MATLAB produces. The difference is due to the way
that code generation defines complex multiplication. For code generation:

* Multiplication of a complex value by a complex value (a + bi) (¢ + di) is defined as (ac - bd) + (ad
+ bc)i. The complete calculation is performed, even when a real or an imaginary part is zero.

» Multiplication of a real value by a complex value c(a + bi) is defined as ca + cbi .
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Encoding of Characters in Code Generation

MATLAB represents characters in 16-bit Unicode. The code generator represents characters in an 8-
bit codeset that the locale setting determines. Differences in character encoding between MATLAB
and code generation have these consequences:

* Code generation of characters with numeric values greater than 255 produces an error.

» For some characters in the range 128-255, it might not be possible to represent the character in
the codeset of the locale setting or to convert the character to an equivalent 16-bit Unicode
character. Passing characters in this range between MATLAB and generated code can result in
errors or different answers.

* For code generation, some toolbox functions accept only 7-bit ASCII characters.

» Casting a character that is not in the 7-bit ASCII codeset to a numeric type, such as double, can
produce a different result in the generated code than in MATLAB. As a best practice, for code
generation, avoid performing arithmetic with characters.

See Also

More About
. “Locale Setting Concepts for Internationalization”
. “Differences Between Generated Code and MATLAB Code” on page 2-6
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Array Size Restrictions for Code Generation

For code generation, the maximum number of elements of an array is constrained by the code
generator and the target hardware.

For fixed-size arrays and variable-size arrays that use static memory allocation, the maximum number
of elements is the smaller of:

* intmax('int32").

* The largest integer that fits in the C int data type on the target hardware.

For variable-size arrays that use dynamic memory allocation, the maximum number of elements is the
smaller of:

* intmax('int32").

* The largest power of 2 that fits in the C int data type on the target hardware.

These restrictions apply even on a 64-bit platform.

For a fixed-size array, if the number of elements exceeds the maximum, the code generator reports an
error at compile time.

For a variable-size array, if the number of elements exceeds the maximum at run time, the error
checking behavior depends on the code generation target:

* While running the code generated by using the codegen command, the fiaccel command, or
the MATLAB Coder app, if run-time error checks are enabled, the generated code reports an error.
By default, run-time error checks are enabled for MEX code and disabled for standalone C/C++
code.

* During simulation of a MATLAB Function block, the software reports an error. Generated
standalone code for MATLAB Function blocks cannot report array size violations.

See Also
coder.HardwareImplementation

More About

. “Generate Standalone C/C++ Code That Detects and Reports Run-Time Errors” on page 29-20
. “Control Run-Time Checks” on page 33-12
. “Potential Differences Reporting” on page 2-20
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Code Generation for Constants in Structures and Arrays

5-14

The code generator does not recognize constant structure fields or array elements in the following
cases:

Fields or elements are assigned inside control constructs

In the following code, the code generator recognizes that the structure fields s.a and s.b are
constants.

function y = mystruct()
s.a = 3;

s.b = 5;

y = zeros(s.a,s.b);

If any structure field is assigned inside a control construct, the code generator does not recognize the
constant fields. This limitation also applies to arrays with constant elements. Consider the following
code:

function y = mystruct(x)

s.a = 3;

if x > 1
s.b = 4;

else
s.b = 5;

end

y = zeros(s.a,s.b);

The code generator does not recognize that s.a and s.b are constant. If variable-sizing is enabled, y
is treated as a variable-size array. If variable-sizing is disabled, the code generator reports an error.

Constants are assigned to array elements using non-scalar indexing

In the following code, the code generator recognizes that a(1) is constant.

function y = myarray()
a = zeros(1,3);

a(l) = 20;

y = coder.const(a(l));

In the following code, because a (1) is assigned using non-scalar indexing, the code generator does
not recognize that a(1) is constant.

function y = myarray()
a = zeros(1,3);

a(l:2) = 20;

y = coder.const(a(l));

A function returns a structure or array that has constant and nonconstant elements

For an output structure that has both constant and nonconstant fields, the code generator does not
recognize the constant fields. This limitation also applies to arrays that have constant and
nonconstant elements. Consider the following code:

function y = mystruct out(x)
s = create structure(x);
y = coder.const(s.a);
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ction s = create structure(x)

Because create structure returns a structure s that has one constant field and one nonconstant
field, the code generator does not recognize that s.a is constant. The coder. const call fails
because s .a is not constant.
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Code Generation for Strings
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Code generation supports 1-by-1 MATLAB string arrays. Code generation does not support string
arrays that have more than one element.

A 1-by-1 string array, called a string scalar, contains one piece of text, represented as a 1-by-n
character vector. An example of a string scalar is "Hello, world". For more information about
strings, see “Text in String and Character Arrays”.

Limitations

For string scalars, code generation does not support:

Global variables
Indexing with curly braces {}
Missing values

Defining input types programmatically by using preconditioning with assert statements, when
generating code by using the codegen command, the fiaccel command, or the MATLAB Coder
app

Their use with coder.varsize, when generating code by using the codegen command, the
fiaccel command, or the MATLAB Coder app

Their use as Simulink signals, parameters, or data store memory

For code generation, limitations that apply to classes apply to strings. See “MATLAB Classes
Definition for Code Generation” on page 15-2.

Differences Between Generated Code and MATLAB Code

Converting a string that contains multiple unary operators to double can produce different
results between MATLAB and the generated code. Consider this function:

function out = foo(op)
out = double(op + 1);
end

For an input value " - - ", the function converts the string "--1" to double. In MATLAB, the
answer is NaN. In the generated code, the answer is 1.

Double conversion for a string with misplaced commas (commas that are not used as thousands
separators) can produce different results from MATLAB.

See Also

More About

“Define String Scalar Inputs” on page 5-17
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Define String Scalar Inputs

You can define string scalar inputs at the command line or in the MATLAB Coder app. Programmatic
specification of string scalar input types by using preconditioning (assert statements) is not
supported.

Define String Scalar Types at the Command Line

To define string scalar inputs at the command line, use one of these procedures:

* “Provide an Example String Scalar Input” on page 5-17

* “Provide a String Scalar Type” on page 5-17

* “Provide a Constant String Scalar Input” on page 5-17

* “Provide a Variable-Size String Scalar Input” on page 5-17

Alternatively, if you have a test file that calls your entry-point function with example inputs, you can
determine the input types by using coder.getArgTypes.

Provide an Example String Scalar Input

To provide an example string scalar to codegen, use the -args option:
codegen myFunction -args {"Hello, world"}

Provide a String Scalar Type

To provide a type for a string scalar to codegen:

1 Define a string scalar. For example:

s = "mystring";
2  Create a type from s.

t = coder.typeof(s);
3  Pass the type to codegen by using the -args option.

codegen myFunction -args {t}
Provide a Constant String Scalar Input
To specify that a string scalar input is constant, use coder.Constant with the -args option:
codegen myFunction -args {coder.Constant("Hello, world")}
Provide a Variable-Size String Scalar Input
To specify that a string scalar input has a variable-size:
1 Define a string scalar. For example:

s = "mystring";
2  Create a type from s.

t = coder.typeof(s);
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3 Assign the StringlLength property of the type the upper bound of the string length and set
VariableStringlLength to true. For example, specify that type t is variable-size with an
upper bound of 10.

t.StringlLength = 10;
t.VariableStringLength = true;

To specify that t is variable-size with no upper bound:
t.StringLength = Inf;

This automatically sets the VariableStringlLength property to true.
4 Pass the type to codegen by using the -args option.

codegen myFunction -args {t}

Define String Scalar Inputs in the MATLAB Coder App

To define string scalar inputs in the app, use one of these procedures:

* “Automatically Define Input Types by Using the App” on page 24-4
* “Define Input Parameter by Example by Using the App” on page 24-6
* “Define or Edit Input Parameter Type by Using the App” on page 24-14

See Also
coder.Constant | coder.getArgTypes | coder.typeof

More About

. “Code Generation for Strings” on page 5-16
. “Specify Properties of Entry-Point Function Inputs” on page 27-44
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Code Generation for Sparse Matrices

Sparse matrices provide efficient storage in memory for arrays with many zero elements. Sparse
matrices can provide improved performance and reduced memory usage for generated code.
Computation time on sparse matrices scales only with the number of operations on nonzero elements.

Functions for creating and manipulating sparse matrices are listed in “Sparse Matrices”. To check if a
function is supported for code generation, see the function reference page. Code generation does not
support sparse matrix inputs created by using sparse for all functions.

Sparse Data Types in Generated Code

If your target language is C, the code generator creates a type definition for sparse matrices called
sparse. This definition stores the arrays of row indices, column indices, and corresponding element
values for the sparse matrix. The sparse type definition is generated in the file

myFunction types.h, where myFunction refers to the name of your top-level function.

If your target language is C++, the code generator creates a class sparse in the file sparse.h.

The number of nonzero elements in a sparse matrix can change during computation. For this reason,
sparse matrices in the generated code use variable-size arrays and dynamic memory allocation. If
your target language is C, the generated code implements dynamically allocated variables by using
the emxArray type. If your target language is C++, the generated code implements dynamically
allocated variables by using the coder: :array class template.

For example, consider the function myDiag:
function out = myDiag(n,Kk)

% create diagonal sparse matrix
s#codegen

A = speye(n);

out = A.*k;

end

Generate code for the function by using the codegen command:
codegen -config:lib myDiag -args {3, 5} -launchreport

The sparse type can be found in the file myDiag types.h.

Input Definition

Suppose that you have a function foo that accepts a sparse matrix as an input. This function
multiplies the sparse matrix by an identity matrix and outputs the product:

function C = foo(ASparselnput)

%#codegen

B = speye(size(ASparselnput'));

C = ASparseInput*B;

Suppose that you want to generate standalone 1ib, d11, or exe code to use outside of the MATLAB
environment. To generate 1ib code, enter:

codegen -config:lib foo -args {sparse(5,5)} -launchreport
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You can simplify your standalone code by constructing the sparse matrix inside your entry-point
function rather than passing a sparse matrix as an input. When you follow this guideline, construction
of the sparse matrix can be deferred to the code generator. Other code that uses your generated code
can pass input types such as arrays rather than specialized sparse types.

For example, instead of generating code directly from foo, create a new entry-point function
fooMain to generate code from. Replace the sparse input with the triplet form of the sparse data.

function [ii,jj,out] = fooMain(i,j,v,m,n)
%#codegen

S = sparse(i,j,v,m,n);

[ii,jj,out] = find(foo(S));

Suppose that you want to generate code for a 5-by-5 sparse matrix S with a variable-size number of
nonzero elements. To generate code, enter:

S = sparse(5,5);

[m,n] = size(S);

[i,j,v] = find(S);

i = coder.typeof(i,[inf 11);

codegen -config:lib fooMain -args {i,i,i,m,n} -launchreport

You can specify the input for fooMain with integer and variable-size array types. If you generate
code directly from foo, you must construct the input as a sparse type.

If you do choose to pass a sparse matrix as an entry-point function input, you can use coder.typeof
to initialize the input. For example, for the function foo, you can enter:

t = coder.typeof(sparse(5,5));
codegen -config:lib foo -args {t} -launchreport

For sparse matrices, the code generator does not track upper bounds for variable-size dimensions. All
variable-size dimensions are treated as unbounded.

If you generate a MEX function for foo, the input and output data must be converted to sparse type.
This conversion can slow performance for repeated MEX function calls or large inputs and outputs.

You cannot define sparse input types programmatically by using assert statements.

Code Generation Guidelines

Initialize matrices by using sparse constructors to maximize your code efficiency. For example, to
construct a 3-by-3 identity matrix, use speye(3,3) rather than sparse(eye(3,3)).

Indexed assignment into sparse matrices incurs an overhead compared to indexed assignment into
full matrices. For example:

S = speye(10);
S(7,7) = 42;

As in MATLAB, sparse matrices are stored in compressed sparse column format. When you insert a
new nonzero element into a sparse matrix, all subsequent nonzero elements must be shifted
downward, column by column. These extra manipulations can slow performance. See “Accessing
Sparse Matrices”.
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Code Generation Limitations

To generate code that uses sparse matrices, dynamic memory allocation must be enabled. To store
the changing number of nonzero elements, and their values, sparse matrices use variable-size arrays
in the generated code. To change dynamic memory allocation settings, see “Control Memory
Allocation for Variable-Size Arrays” on page 6-4. Because sparse matrices use variable-size arrays
for dynamic memory allocation, limitations on “Variable-Size Data” also apply to sparse matrices.

You cannot assign sparse data to data that is not sparse. The generated code uses distinct data type
representations for sparse and full matrices. To convert to and from sparse data, use the explicit
sparse and full conversion functions.

You cannot define a sparse matrix with competing size specifications. The code generator fixes the
size of the sparse matrix when it produces the corresponding data type definition in C/C++. As an
example, the function foo causes an error in code generation:

function y = foo(n)
s#codegen
ifn>0

y = sparse(3,2);
else

y = sparse(4,3);
end

Logical indexing into sparse matrices is not supported for code generation. For example, this syntax
causes an error:

S = magic(3)
4

S(S > 7) = 42;

For sparse matrices, you cannot delete array elements by assigning empty arrays:

S(:,2) = [1;

See Also
sparse | full | coder.typeof | magic | speye | codegen

More About

. “Sparse Matrices”

. “Code Generation for Variable-Size Arrays” on page 6-2

. “Use C Arrays in the Generated Function Interfaces” on page 32-3

. “Use Dynamically Allocated C++ Arrays in Generated Function Interfaces” on page 32-15
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You can specialize individual MATLAB functions for row-major layout or column-major layout by
inserting coder.rowMajor or coder.columnMajor calls into the function body. Using these
function specializations, you can combine row-major data and column-major data in your generated
code. You can also specialize classes for one specific array layout. Function and class specializations
allow you to:

* Incrementally modify your code for row-major layout or column-major layout.

* Define array layout boundaries for applications that require different layouts in different
components.

* Structure the inheritance of array layout between many different functions and classes.
For MATLAB Coder entry-point (top-level) functions, all inputs and outputs must use the same array

layout. In the generated C/C++ code, the entry-point function interface accepts and returns data with
the same array layout as the function array layout specification.

Note By default, code generation uses column-major array layout.

Specify Array Layout in a Function

For an example of a specialized function, consider addMat rixRM:

function [S] = addMatrixRM(A,B)
s#codegen

S = zeros(size(A));
coder.rowMajor; %
(

pecify row-major code
for row = 1l:size(A,1)
for col = 1l:size(A,2)
S(row,col) = A(row,col) + B(row,col);

end
end

For MATLAB Coder, you can generate code for addMat rixRM by using the codegen command.

codegen addMatrixRM -args {ones(20,10),o0nes(20,10)} -config:lib -launchreport

Because of the coder.rowMajor call, the code generator produces code that uses data stored in
row-major layout.

Other functions called from a row-major function or column-major function inherit the same array
layout. If a called function has its own distinct coder. rowMajor or coder.columnMajor call, the
local call takes precedence.

You can mix column-major and row-major functions in the same code. The code generator inserts
transpose or conversion operations when passing data between row-major and column-major
functions. These conversion operations ensure that array elements are stored as required by
functions with different array layout specifications. For example, the inputs to a column-major
function, called from a row-major function, are converted to column-major layout before being passed
to the column-major function.
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Query Array Layout of a Function

To query the array layout of a function at compile time, use coder.isRowMajor or
coder.isColumnMajor. This query can be useful for specializing your generated code when it
involves row-major and column-major functions. For example, consider this function:

function [S] = addMatrixRouted(A,B)
if coder.isRowMajor
%sexecute this code if row-major
S = addMatrixRM(A,B);
elseif coder.isColumnMajor
%sexecute this code if column-major
S = addMatrix OptimizedForColumnMajor(A,B);
end

This function behaves differently depending on whether it is row-major or column-major. When
addMatrixRouted is row-major, it calls the addMat rixRM function, which has efficient memory
access for row-major data. When the function is column-major, it calls a version of the addMatrixRM
function optimized for column-major data.

For example, consider this function definition. The algorithm iterates through the columns in the
outer loop and the rows in the inner loop, in contrast to the addMat rixRM function.

function [S] = addMatrix OptimizedForColumnMajor(A,B)
s#codegen
S = zeros(size(A));
for col = 1l:size(A,?2)

for row = 1:size(A,1)

S(row,col) = A(row,col) + B(row,col);

end

end

Code generation for this function yields:

/* column-major layout */
for (col = 0; col < 10; col++) {
for (row = 0; row < 20; row++) {
S[row + 20 * col] = A[row + 20 * col] + B[row + 20 * col];
}
}

The generated code has a stride length of only one element. Due to the specializing queries, the
generated code for addMatrixRouted provides efficient memory access for either choice of array
layout.

Specify Array Layout in a Class

You can specify array layout for a class so that object property variables are stored with a specific
array layout. To specify the array layout, place a coder. rowMajor or coder.columnMajor call in
the class constructor. If you assign an object with a specified array layout to the property of another
object, the array layout of the assigned object takes precedence.

Consider the row-major class rowMats as an example. This class contains matrix properties and a
method that consists of an element-wise addition algorithm. The algorithm in the method performs
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more efficiently for data stored in row-major layout. By specifying coder. rowMajor in the class
constructor, the generated code uses row-major layout for the property data.

classdef rowMats

properties (Access = public)
A;
B;
C;

end

methods
function obj = rowMats(A,B)

coder.rowMajor;

if nargin ==

obj.A = 0;

obj.B = 0;

obj.C = 0;
else

obj.A = A;

obj.B = B;

obj.C = zeros(size(A));
end

end
function obj = add(obj)
for row = l:size(obj.A,1)
for col = 1l:size(obj.A,2)
obj.C(row,col) = obj.A(row,col) + obj.B(row,col);
end
end
end
end
end

Use the class in a simple function doMath. The inputs and outputs of the entry-point function must all
use the same array layout.

function [out] = doMath(inl,in2)
s#codegen

out = zeros(size(inl));

myMats = rowMats(inl,in2);
myMats = myMats.add;

out = myMats.C;

end

For MATLAB Coder, you can generate code by entering:

rand(20,10);

rand(20,10);

fg = coder.config('lib");

odegen -config cfg doMath -args {A,B} -launchreport

A
B
C
C

With default settings, the code generator assumes that the entry-point function inputs and outputs
use column-major layout, because you do not specify row-major layout for the function doMath.
Therefore, before calling the class constructor, the generated code converts inl and in2 to row-
major layout. Similarly, it converts the doMath function output back to column-major layout.

When designing a class for a specific array layout, consider:
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» Ifyou do not specify the array layout in a class constructor, objects inherit their array layout from
the function that calls the class constructor, or from code generation configuration settings.

* You cannot specify the array layout in a nonstatic method by using coder. rowMajor or
coder.columnMajor. Methods use the same array layout as the receiving object. Methods do not
inherit the array layout of the function that calls them. For static methods, which are used
similarly to ordinary functions, you can specify the array layout in the method.

* Ifyou specify the array layout of a superclass, the subclass inherits this array layout specification.
You cannot specify conflicting array layouts between superclasses and subclasses.

See Also
coder.columnMajor | coder.rowMajor | coder.isRowMajor | coder.isColumnMajor |
codegen

More About

. “Generate Code That Uses Row-Major Array Layout” on page 38-4
. “Code Design for Row-Major Array Layout” on page 5-26
. “Generate Code That Uses N-Dimensional Indexing” on page 27-137
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Outside of code generation, MATLAB uses column-major layout by default. Array layout specifications
do not affect self-contained MATLAB code. To test the efficiency of your generated code or your
MATLAB Function block, create separate versions with row-major layout and column-major layout.
Then, compare their performance.

You can design your MATLAB code to avoid potential inefficiencies related to array layout.
Inefficiencies can be caused by:

* Conversions between row-major layout and column-major layout.
* One-dimensional or linear indexing of row-major data.
* Reshaping or rearrangement of row-major data.

Array layout conversions are necessary when you mix row-major and column-major specifications in
the same code or model, or when you use linear indexing on data that is stored in row-major. When
you simulate a model or generate code for a model that uses column-major, and that contains a
MATLAB Function block that uses row-major, then the software converts input data to row-major and
output data back to column-major as needed, and vice versa.

Inefficiencies can be caused by functions or algorithms that are less optimized for a given choice of
array layout. If a function or algorithm is more efficient for a different layout, you can enforce that
layout by embedding it in another function with a coder. rowMajor or coder.columnMajor call.

Understand Potential Inefficiencies Caused by Array Layout

Consider the code for myMixedFn2, which uses coder. ceval to pass data with row-major and
column-major layout:

function [B, C] = myMixedFn2(x,y)

s#codegen

specify type of return arguments for ceval calls
zeros(size(x));

zeros(size(x));

zeros(size(x));

O @ > °

% include external C functions that use row-major & column-major
coder.cinclude('addMatrixRM.h');
coder.updateBuildInfo('addSourceFiles', 'addMatrixRM.c');
coder.cinclude('addMatrixCM.h');
coder.updateBuildInfo('addSourceFiles', 'addMatrixCM.c');
% call C function that uses column-major order
coder.ceval('-layout:columnMajor', "addMatrixCM",
coder.rref(x),coder.rref(y),coder.wref(A));
% compute B
for i = 1l:numel(A)
B(i) = A(i) + 7;
end

% call C function that uses row-major order
coder.ceval('-layout:rowMajor', 'addMatrixRM",

coder.rref(y),coder.rref(B),coder.wref(C));
end
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The external files are:

addMatrixRM.h

extern void addMatrixRM(const double x[200], const double y[200], double z[200]);
addMatrixRM.c

#include "addMatrixRM.h"

void addMatrixRM(const double x[200], const double y[200], double z[200])
{

int row;

int col;

/* add two matrices */
for (row = 0; row < 20; row++) {
/* row by row */
for (col = 0; col < 10; col++) {
/* each element in current row */
z[col + 10 * row] = x[col + 10 * row] + y[col + 10 * row];
}
}
}

addMatrixCM.h
extern void addMatrixCM(const double x[200], const double y[200], double z[200]);

addMatrixCM.c
#include "addMatrixCM.h"

void addMatrixCM(const double x[200], const double y[200], double z[200])
{

int row;

int col;

/* add two matrices */
for (row = 0; row < 20; row++) {
/* row by row */
for (col = 0; col < 10; col++) {
/* each element in current row */
z[row + 20 * col] = x[row + 20 * col] + y[row + 20 * col];
}
}
}

Declare the configuration object, cfg. Generate code that uses row-major layout by using the -
rowmajor option.

cfg = coder.config('lib");
cfg.HighlightPotentialRowMajorIssues = true;
codegen myMixedFn2 -args {ones(20,10),ones(20,10)} -config cfg -launchreport -rowmajor

Highlighted issues are displayed in the code generation report, on the Code Insights tab, under the
Potential row major issues section.
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Array layout inefficiencies occur here because:

* The code generator must convert the input variables x and y to column-major layout before
passing them to addMat rixCM. Transposes must be inserted into the generated code.

* The code generator must transpose the output variable A back into row-major layout, because

myMixedFn2 uses row-major layout.

* The for-loop uses linear indexing, which requires column-major data. The code generator must
recalculate the linear indexing because variables A and B are stored in row-major.

Linear Indexing Uses Column-Major Array Layout

The code generator follows MATLAB column-major semantics for linear indexing. For more

information on linear indexing in MATLAB, see “Array Indexing”.
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To use linear indexing on row-major data, the code generator must first recalculate the data
representation in column-major layout. This additional processing can slow performance. To improve
code efficiency, avoid using linear indexing on row-major data, or use column-major layout for code
that uses linear indexing.

For example, consider the function sumShiftedProducts, which accepts a matrix as an input and
outputs a scalar value. The function uses linear indexing on the input matrix to sum up the product of
each matrix element with an adjacent element. The output value of this operation depends on the
order in which the input elements are stored.

function mySum = sumShiftedProducts(A)
s#codegen
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mySum = 0;

% create linear vector of A elements

B =A(:);

% multiply B by B with elements shifted by one, and take sum
mySum = sum( B.*circshift(B,1) );

end

For MATLAB Coder, to generate code that uses row-major layout, enter:
codegen -config:mex sumShiftedProducts -args {ones(2,3)} -launchreport -rowmajor

For an example input, consider the matrix:

D = reshape(1:6,3,2)"'

which yields:

D —3
1 2 3
4 5 6

If you pass this matrix as input to the generated code, the elements of A are stored in the order:

1 2 3 4 5 6

In contrast, because the vector B is obtained by linear indexing, it is stored in the order:

1 4 2 5 3 6

The code generator must insert a reshaping operation to rearrange the data from row-major layout
for A to column-major layout for B. This additional operation reduces the efficiency of the function for
row-major layout. The inefficiency increases with the size of the array. Because linear indexing always
uses column-major layout, the generated code for sumShiftedProducts produces the same output
result whether generated with row-major layout or column-major layout.

In general, functions that compute indices or subscripts also use linear indexing, and produce results
corresponding to data stored in column-major layout. These functions include:

 ind2sub
e sub2ind
« colon

See Also

coder.ceval | coder.columnMajor | coder.rowMajor | coder.isRowMajor |
coder.isColumnMajor

More About

. “Generate Code That Uses Row-Major Array Layout” on page 38-4

. “Specify Array Layout in Functions and Classes” on page 5-22

. “Generate Code That Uses N-Dimensional Indexing” on page 27-137
. “Code Generation Reports” on page 29-7
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“Control Memory Allocation for Variable-Size Arrays” on page 6-4

“Specify Upper Bounds for Variable-Size Arrays” on page 6-6
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For code generation, an array dimension is fixed-size or variable-size. If the code generator can
determine the size of the dimension and that the size of the dimension does not change, then the
dimension is fixed-size. When all dimensions of an array are fixed-size, the array is a fixed-size array.
In the following example, Z is a fixed-size array.

function Z = myfcn()
Z = zeros(1,4);
end

The size of the first dimension is 1 and the size of the second dimension is 4.

If the code generator cannot determine the size of a dimension or the code generator determines that
the size changes, then the dimension is variable-size. When at least one of its dimensions is variable-
size, an array is a variable-size array.

A variable-size dimension is either bounded or unbounded. A bounded dimension has a fixed upper
size. An unbounded dimension does not have a fixed upper size.

In the following example, the second dimension of Z is bounded, variable-size. It has an upper bound
of 16.

function s = myfcn(n)

if (n > 0)

Z = zeros(1,4);
else

Z = zeros(1,16);

end
s = length(Z);

In the following example, if the value of n is unknown at compile time, then the second dimension of Z
is unbounded.

function s = myfcn(n)
Z = rand(1,n);

s = sum(Z);
end

You can define variable-size arrays by:

» Using constructors, such as zeros, with a nonconstant dimension
* Assigning multiple, constant sizes to the same variable before using it
» Declaring all instances of a variable to be variable-size by using coder.varsize

For more information, see “Define Variable-Size Data for Code Generation” on page 6-8.

You can control whether variable-size arrays are allowed for code generation. See “Enabling and
Disabling Support for Variable-Size Arrays” on page 6-3.

Memory Allocation for Variable-Size Arrays

For fixed-size arrays and variable-size arrays whose size is less than a threshold, the code generator
allocates memory statically on the stack. For unbounded, variable-size arrays and variable-size arrays
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whose size is greater than or equal to a threshold, the code generator allocates memory dynamically
on the heap.

You can control whether dynamic memory allocation is allowed or when it is used for code
generation. See “Control Memory Allocation for Variable-Size Arrays” on page 6-4.

The code generator represents dynamically allocated data as a structure type called emxArray. The
code generator generates utility functions that create and interact with emxArrays. If you use
Embedded Coder, you can customize the generated identifiers for the emxArray types and utility
functions. See “Identifier Format Control” (Embedded Coder).

Enabling and Disabling Support for Variable-Size Arrays

By default, support for variable-size arrays is enabled. To modify this support:

* In a code configuration object, set the EnableVariableSizing parameter to true or false.

* Inthe MATLAB Coder app, in the Memory settings, select or clear the Enable variable-sizing
check box.

Variable-Size Arrays in a Code Generation Report

You can tell whether an array is fixed-size or variable-size by looking at the Size column of the
Variables tab in a code generation report.

Type Size Class
Output 1=1 double
Input 1=:16 char

Input 1=1 double
Local 1x=:7? double

A colon (:) indicates that a dimension is variable-size. A question mark (?) indicates that the size is
unbounded. For example, a size of 1-by-:? indicates that the size of the first dimension is fixed-size 1
and the size of the second dimension is unbounded, variable-size. Italics indicates that the code
generator produced a variable-size array, but the size of the array does not change during execution.

Type Size Class
Output 1=:5 double
Input 1=1 double
Local 1=4 double

See Also

More About

. “Control Memory Allocation for Variable-Size Arrays” on page 6-4

. “Specify Upper Bounds for Variable-Size Arrays” on page 6-6
. “Define Variable-Size Data for Code Generation” on page 6-8
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Dynamic memory allocation allocates memory on the heap as needed at run-time, instead of
allocating memory statically on the stack. Dynamic memory allocation is beneficial when:

* You do not know the upper bound of an array.

* You do not want to allocate memory on the stack for large arrays.

Dynamic memory allocation and the freeing of this memory can result in slower execution of the
generated code. To control the use of dynamic memory allocation for variable-size arrays, you can:
* Provide upper bounds for variable-size arrays on page 6-4.

* Disable dynamic memory allocation on page 6-4.

* Configure the code generator to use dynamic memory allocation for arrays bigger than a threshold
on page 6-4.

Provide Upper Bounds for Variable-Size Arrays

For an unbounded variable-size array, the code generator allocates memory dynamically on the heap.
For a variable-size array with upper bound, whose size, in bytes, is less than the dynamic memory
allocation threshold, the code generator allocates memory statically on the stack. To prevent dynamic
memory allocation:

1  Specify upper bounds for a variable-size array. See “Specify Upper Bounds for Variable-Size
Arrays” on page 6-6.

2  Make sure that the size of the array, in bytes, is less than the dynamic memory allocation
threshold. See “Configure Code Generator to Use Dynamic Memory Allocation for Arrays Bigger
Than a Threshold” on page 6-4.

Disable Dynamic Memory Allocation

By default, dynamic memory allocation is enabled for variable-size arrays. To disable it:

* In a configuration object for code generation, set the DynamicMemoryAllocation parameter to
"Never'.

* Inthe MATLAB Coder app, in the Memory settings, set Dynamic memory allocation for
variable-sized arrays to Never.

If you disable dynamic memory allocation, you must provide upper bounds for variable-size arrays.
Configure Code Generator to Use Dynamic Memory Allocation for
Arrays Bigger Than a Threshold

Instead of disabling dynamic memory allocation for all variable-size arrays, you can specify for which
size arrays the code generator uses dynamic memory allocation.

Use the dynamic memory allocation threshold to:

» Disable dynamic memory allocation for smaller arrays. For smaller arrays, static memory
allocation can speed up generated code. However, static memory allocation can lead to unused



Control Memory Allocation for Variable-Size Arrays

storage space. You can decide that the unused storage space is not a significant consideration for
smaller arrays.

* Enable dynamic memory allocation for larger arrays. For larger arrays, when you use dynamic
memory allocation, you can significantly reduce storage requirements.

To instruct the code generator to use dynamic memory allocation for variable-size arrays whose size
is greater than or equal to the threshold:

* In the configuration object, set the DynamicMemoryAllocationto 'Threshold'.

* In the MATLAB Coder app, in the Memory settings, set Dynamic memory allocation for
variable-sized arrays to For arrays with max size at or above threshold.

The default dynamic memory allocation threshold is 64 kilobytes. To change the threshold:

* In a configuration object for code generation, set the DynamicMemoryAllocationThreshold.

* In the MATLAB Coder app, in the Memory settings, set Dynamic memory allocation
threshold.

See Also

More About

. “Code Generation for Variable-Size Arrays” on page 6-2
. “Configure Build Settings” on page 27-13
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Specify upper bounds for an array when:

* Dynamic memory allocation is disabled.

If dynamic memory allocation is disabled, you must specify upper bounds for all arrays.
* You do not want the code generator to use dynamic memory allocation for the array.

Specify upper bounds that result in an array size (in bytes) that is less than the dynamic memory
allocation threshold.

Specify Upper Bounds for Variable-Size Inputs

If you generate code by using codegen, to specify upper bounds for variable-size inputs, use the
coder.typeof construct with the -args option. For example:

codegen foo -args {coder.typeof(double(0),[3 100],1)}

This command specifies that the input to function foo is a matrix of real doubles with two variable
dimensions. The upper bound for the first dimension is 3. The upper bound for the second dimension
is 100.

If you generate code by using the MATLAB Coder app, see “Specify Properties of Entry-Point
Function Inputs Using the App” on page 24-3 and “Make Dimensions Variable-Size When They
Meet Size Threshold” on page 24-5.

Specify Upper Bounds for Local Variables

When using static allocation, the code generator uses a sophisticated analysis to calculate the upper
bounds of local data. However, when the analysis fails to detect an upper bound or calculates an
upper bound that is not precise enough for your application, you must specify upper bounds explicitly
for local variables.

Constrain the Value of Variables That Specify the Dimensions of Variable-Size Arrays

To constrain the value of variables that specify the dimensions of variable-size arrays, use the assert
function with relational operators. For example:

function y = dim _need bound(n) S#codegen
assert (n <= 5);
L= ones(n,n);

M = zeros(n,n);
M= [L; MI;
y =M

This assert statement constrains input n to a maximum size of 5. L is variable-size with upper
bounds of 5 in each dimension. M is variable-size with an upper bound of 10 in the first dimension and
5 in the second dimension.
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Specify the Upper Bounds for All Instances of a Local Variable

To specify the upper bounds for all instances of a local variable in a function, use the
coder.varsize function. For example:

function Y = example boundsl(u) S#codegen
Y =1[12345];
coder.varsize('Y',[1 101);
if (u > 0)
Y = [Y Y+ul;
else
Y
end

[Y Y*ul;

The second argument of coder.varsize specifies the upper bound for each instance of the variable
specified in the first argument. In this example, the argument [1 10] indicates that for every
instance of Y:

* The first dimension is fixed at size 1.

* The second dimension can grow to an upper bound of 10.

See Also
coder.varsize | coder.typeof

More About
. “Code Generation for Variable-Size Arrays” on page 6-2
. “Define Variable-Size Data for Code Generation” on page 6-8
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Define Variable-Size Data for Code Generation

For code generation, before using variables in operations or returning them as outputs, you must
assign them a specific class, size, and complexity. Generally, after the initial assignment, you cannot
reassign variable properties. Therefore, after assigning a fixed size to a variable or structure field,
attempts to grow the variable or structure field might cause a compilation error. In these cases, you
must explicitly define the data as variable-size by using one of these methods.

Method

See

Assign the data from a variable-size matrix
constructor such as:

* ones
* zeros
* repmat

“Use a Matrix Constructor with Nonconstant
Dimensions” on page 6-8

Assign multiple, constant sizes to the same
variable before using (reading) the variable.

“Assign Multiple Sizes to the Same Variable” on
page 6-8

Define all instances of a variable to be variable-

“Define Variable-Size Data Explicitly by Using

size. coder.varsize” on page 6-9

Use a Matrix Constructor with Nonconstant Dimensions

You can define a variable-size matrix by using a constructor with nonconstant dimensions. For
example:

unction s var by assign(u) S#codegen
= ones(3

- Iu)
= numel(y);

.f:
y ;
s

If you are not using dynamic memory allocation, you must also add an assert statement to provide
upper bounds for the dimensions. For example:

function s = var by assign(u) S%#codegen
assert (u < 20);

y = ones(3,u);

S numel(y);

Assign Multiple Sizes to the Same Variable

Before you use (read) a variable in your code, you can make it variable-size by assigning multiple,
constant sizes to it. When the code generator uses static allocation on the stack, it infers the upper
bounds from the largest size specified for each dimension. When you assign the same size to a given
dimension across all assignments, the code generator assumes that the dimension is fixed at that size.
The assignments can specify different shapes and sizes.

When the code generator uses dynamic memory allocation, it does not check for upper bounds. It
assumes that the variable-size data is unbounded.

Inferring Upper Bounds from Multiple Definitions with Different Shapes

function s = var by multiassign(u) S#codegen
if (u > 0)
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y = ones(3,4,5);

else
y

end

s = numel(y);

zeros(3,1);

When the code generator uses static allocation, it infers that y is a matrix with three dimensions:

* The first dimension is fixed at size 3
» The second dimension is variable-size with an upper bound of 4
* The third dimension is variable-size with an upper bound of 5

When the code generator uses dynamic allocation, it analyzes the dimensions of y differently:

» The first dimension is fixed at size 3.
* The second and third dimensions are unbounded.

Define Variable-Size Data Explicitly by Using coder.varsize

To explicitly define variable-size data, use the function coder.varsize. Optionally, you can also
specify which dimensions vary along with their upper bounds. For example:

* Define B as a variable-size 2-dimensional array, where each dimension has an upper bound of 64.

coder.varsize('B', [64 64]);
* Define B as a variable-size array:

coder.varsize('B');

When you supply only the first argument, coder.varsize assumes that all dimensions of B can
vary and that the upper bound is size(B).

Specify Which Dimensions Vary

You can use the function coder.varsize to specify which dimensions vary. For example, the
following statement defines B as an array whose first dimension is fixed at 2, but whose second
dimension can grow to a size of 16:

coder.varsize('B',[2, 16],[0 1])

The third argument specifies which dimensions vary. This argument must be a logical vector or a
double vector containing only zeros and ones. Dimensions that correspond to zeros or false have
fixed size. Dimensions that correspond to ones or true vary in size. coder.varsize usually treats
dimensions of size 1 as fixed. See “Define Variable-Size Matrices with Singleton Dimensions” on page
6-10.

Allow a Variable to Grow After Defining Fixed Dimensions

Function var by if defines matrix Y with fixed 2-by-2 dimensions before the first use (where the
statementY = Y + ureads from Y). However, coder.varsize defines Y as a variable-size matrix,
allowing it to change size based on decision logic in the else clause:

function Y = var by if(u) S#codegen
if (u > 0)
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Y = zeros(2,2);
coder.varsize('Y"');
if (u < 10)

Y=Y + u;
end

else

Y = zeros(5,5);

end

Without coder.varsize, the code generator infers Y to be a fixed-size, 2-by-2 matrix. It generates a
size mismatch error.

Define Variable-Size Matrices with Singleton Dimensions

A singleton dimension is a dimension for which size(A,dim) = 1. Singleton dimensions are fixed in
size when:

You specify a dimension with an upper bound of 1 in coder.varsize expressions.

For example, in this function, Y behaves like a vector with one variable-size dimension:

function Y = dim singleton(u) S#codegen
Y =1[12];
coder.varsize('Y', [1 10]);
if (u > 0)
Y = [Y 3];
else
Y
end

[Y ul;

You initialize variable-size data with singleton dimensions by using matrix constructor expressions
or matrix functions.

For example, in this function, X and Y behave like vectors where only their second dimensions are
variable-size.

function [X,Y] = dim_singleton vects(u) S#codegen
Y = ones(1,3);
X =[1 4];
coder.varsize('Y','X");
if (u > 0)
Y = [Y ul;
else
X
end

[X ul;

You can override this behavior by using coder.varsize to specify explicitly that singleton

dimensions vary. For example:

function Y = dim singleton vary(u) S#codegen

Y

= [1 2];

coder.varsize('Y', [1 10], [1 11);
if (u > 0)

Y = [Y Y+ul;

else

Y

[Y Y*ul;

end
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In this example, the third argument of coder.varsize is a vector of ones, indicating that each
dimension of Y varies in size.

Define Variable-Size Structure Fields

To define structure fields as variable-size arrays, use a colon (:) as the index expression. The colon
(:) indicates that all elements of the array are variable-size. For example:

function y=struct example() S%#codegen

d = struct('values', zeros(1,0), 'color', 0);
data = repmat(d, [3 3]);
coder.varsize('data(:).values');

for i = 1:numel(data)
data(i).color = rand-0.5;
data(i).values = 1:i;
end

y =0;
for i = 1:numel(data)
if data(i).color > 0
y =y + sum(data(i).values);
end
end

The expression coder.varsize('data(:).values') defines the field values inside each element
of matrix data to be variable-size.

Here are other examples:
* coder.varsize('data.A(:).B")

In this example, data is a scalar variable that contains matrix A. Each element of matrix A
contains a variable-size field B.

 coder.varsize('data(:).A(:).B")

This expression defines field B inside each element of matrix A inside each element of matrix data
to be variable-size.

See Also
coder.varsize | coder.typeof

More About

. “Code Generation for Variable-Size Arrays” on page 6-2
. “Specify Upper Bounds for Variable-Size Arrays” on page 6-6
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Diagnosing and Fixing Size Mismatch Errors
Issue: Assigning Variable-Size Matrices to Fixed-Size Matrices

You cannot assign variable-size matrices to fixed-size matrices in generated code. Consider this
example:

function Y = example mismatchl(n) S%#codegen
assert(n < 10);

B = ones(n,n);

A = magic(3);

A(l) = mean(A(:));

if (n == 3)
A = B;

end

Y = A;

Compiling this function produces this error:

??? Dimension 1 is fixed on the left-hand side
but varies on the right ...

There are several ways to fix this error:

* Allow matrix A to grow by adding the coder.varsize construct:
function Y = example mismatchl fix1l(n) S#codegen
coder.varsize('A");

assert(n < 10);
B = ones(n,n);

A = magic(3);
A(1l) = mean(A(:));
if (n == 3)
A = B;
end
Y = A;

» Explicitly restrict the size of matrix B to 3-by-3 by modifying the assert statement:

function Y = example mismatchl fix2(n) S#codegen
coder.varsize('A');
assert(n == 3)
B = ones(n,n);
A = magic(3);
A(1l) = mean(A(:));
if (n == 3)
A = B;
end
Y = A;

* Use explicit indexing to make B the same size as A:
function Y = example mismatchl fix3(n) S#codegen
assert(n < 10);

B = ones(n,n);
A = magic(3);
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A(1l) = mean(A(:));
if (n == 3)

A =B(1:3, 1:3);
end
Y = A;

Issue: Empty Matrix Reshaped to Match Variable-Size Specification

If you assign an empty matrix [] to variable-size data, MATLAB might silently reshape the data in
generated code to match a coder.varsize specification. For example:

function Y = test(u) %#codegen
Y =1[1;
coder.varsize('Y', [1 101);
ifu<®o

Y = [Y ul;
end

In this example, coder.varsize defines Y as a column vector of up to 10 elements, so its first
dimension is fixed at size 1. The statement Y = [] designates the first dimension of Y as 0, creating
a mismatch. The right hand side of the assignment is an empty matrix and the left hand side is a
variable-size vector. In this case, MATLAB reshapes the empty matrix Y = [] in generated code to Y
= zeros(1,0) so it matches the coder.varsize specification.

Issue: Assigning Implicitly Expanded Outputs to Fixed-Size Variable

If you assign the implicitly expanded output of a binary operation or function to a variable of different
size, the code generator might produce an error. For example:

function out = test(n) %#codegen
X = ones(n,1);
if mod(n,2) =1

y = ones(n,n);
X =Yy + X;
end
out = out + x(2);
end

In this example, x is an unbounded vector. Due to implicit expansion, the plus operation on x and y
results in an unbounded matrix (Inf-by-Inf). Assigning an unbounded matrix to x, which is an
unbounded vector, results in an error.

If you want to use the implicitly expanded output, assign the output to a new variable with the same
size as the output.

If you want x to retain its size and not apply implicit expansion in the generated code, use
coder.sameSizeBinaryOp to apply the operation. You can also call
coder.noImplicitExpansionInFunction in your function body to disable implicit expansion in
the code generated for that function.

Implicit expansion automatically expands the operands to apply binary operations on arrays of
compatible sizes. See “Generate Code With Implicit Expansion Enabled” on page 6-27, “Optimize
Implicit Expansion in Generated Code” on page 6-31, and “Compatible Array Sizes for Basic
Operations”.
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Diagnosing and Fixing Errors in Detecting Upper Bounds
Issue: Using Nonconstant Dimensions in a Matrix Constructor

You can define variable-size data by assigning a variable to a matrix with nonconstant dimensions. For
example:

function y = dims _vary(u) S#codegen

if (u > 0)

y = ones(3,u);
else

y = zeros(3,1);
end

However, compiling this function generates an error because you did not specify an upper bound for
u.

There are several ways to fix the problem:

* Enable dynamic memory allocation and recompile. During code generation, MATLAB does not
check for upper bounds when it uses dynamic memory allocation for variable-size data.

+ Ifyou do not want to use dynamic memory allocation, add an assert statement before the first
use of u:

function y = dims_vary fix(u) S#codegen
assert (u < 20);

if (u > 0)

y = ones(3,u);
else

y = zeros(3,1);
end
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Incompatibilities with MATLAB in Variable-Size Support for
Code Generation

In this section...

“Incompatibility with MATLAB for Scalar Expansion” on page 6-15

“Incompatibility with MATLAB in Determining Size of Variable-Size N-D Arrays” on page 6-16
“Incompatibility with MATLAB in Determining Size of Empty Arrays” on page 6-16
“Incompatibility with MATLAB in Determining Class of Empty Arrays” on page 6-18
“Incompatibility with MATLAB in Matrix-Matrix Indexing” on page 6-18

“Incompatibility with MATLAB in Vector-Vector Indexing” on page 6-19

“Incompatibility with MATLAB in Matrix Indexing Operations for Code Generation” on page 6-19
“Incompatibility with MATLAB in Concatenating Variable-Size Matrices” on page 6-20

“Differences When Curly-Brace Indexing of Variable-Size Cell Array Inside Concatenation Returns
No Elements” on page 6-20

Incompatibility with MATLAB for Scalar Expansion

Scalar expansion is a method of converting scalar data to match the dimensions of vector or matrix
data. If one operand is a scalar and the other is not, scalar expansion applies the scalar to every
element of the other operand.

During code generation, scalar expansion rules apply except when operating on two variable-size
expressions. In this case, both operands must be the same size. The generated code does not perform
scalar expansion even if one of the variable-size expressions turns out to be scalar at run time.
Therefore, when run-time error checks are enabled, a run-time error can occur.

Consider this function:

function y = scalar_exp test errl(u) S#codegen

y = ones(3);
switch u
case 0
z = 0;
case 1
z =1;
otherwise
z = zeros(3);
end
y(:) = z;

When you generate code for this function, the code generator determines that z is variable size with
an upper bound of 3.

Summary
Name

u

All Messages (0) Build Logs Code Insights (1) Variables
Type Size Class
Output 3x 3 double (5l
Input 1=1 double
Local 323 double [l
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If you run the MEX function with u equal to 0 or 1, the generated code does not perform scalar
expansion, even though z is scalar at run time. Therefore, when run-time error checks are enabled, a
run-time error can occur.

scalar_exp test errl mex(0)
Subscripted assignment dimension mismatch: [9] ~= [1].

Error in scalar exp test errl (line 11)
y(i) = z;

To avoid this issue, use indexing to force z to be a scalar value.

function y = scalar_exp test errl(u) S#codegen

y = ones(3);
switch u
case 0
z = 0;
case 1
z =1;
otherwise
z = zeros(3);
end
y(:) = z(1);

Incompatibility with MATLAB in Determining Size of Variable-Size N-D
Arrays

For variable-size N-D arrays, the size function can return a different result in generated code than in
MATLAB. In generated code, size(A) returns a fixed-length output because it does not drop trailing
singleton dimensions of variable-size N-D arrays. By contrast, size(A) in MATLAB returns a
variable-length output because it drops trailing singleton dimensions.

For example, if the shape of array A is : ?x:?x:? and size(A,3)==1, size(A) returns:

* Three-element vector in generated code
* Two-element vector in MATLAB code

Workarounds

If your application requires generated code to return the same size of variable-size N-D arrays as
MATLAB code, consider one of these workarounds:

* Use the two-argument form of size.

For example, size(A,n) returns the same answer in generated code and MATLAB code.
* Rewrite size(A):

B
X

size(A);
B(1l:ndims(A));

This version returns X with a variable-length output. However, you cannot pass a variable-size X to
matrix constructors such as zeros that require a fixed-size argument.

Incompatibility with MATLAB in Determining Size of Empty Arrays



Incompatibilities with MATLAB in Variable-Size Support for Code Generation

The size of an empty array in generated code might be different from its size in MATLAB source code.
The size might be 1x0 or 0x1 in generated code, but Ox0 in MATLAB. Therefore, you should not write
code that relies on the specific size of empty matrices.

For example, consider the following code:

function y = foo(n) %#codegen
x=[];
i=20;
while (i

y = size(x);

Concatenation requires its operands to match on the size of the dimension that is not being
concatenated. In the preceding concatenation, the scalar value has size 1x1 and x has size 0x0. To
support this use case, the code generator determines the size for x as [1 X :?]. Because there is
another assignment x = [] after the concatenation, the size of x in the generated code is 1x0
instead of 0x0.

This behavior persists while determining the size of empty character vectors which are denoted as
' ', For example, consider the following code:

function out = string size

out = size('');

end

Here, the value of out might be 1x0 or 0x1 in generated code, but 0x0 in MATLAB.

For incompatibilities with MATLAB in determining the size of an empty array that results from
deleting elements of an array, see “Size of Empty Array That Results from Deleting Elements of an
Array” on page 2-14.

Workaround
If your application checks whether a matrix is empty, use one of these workarounds:

* Rewrite your code to use the isempty function instead of the size function.
* Instead of using x=[] to create empty arrays, create empty arrays of a specific size using zeros.
For example:

function y = test empty(n) S#codegen
x = zeros(1,0);

i=0;
while (i < 10)
x = [5 x];
i=1+1;
end
if n>0
X = zeros(1,0);
end
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y=size(x);
end

Incompatibility with MATLAB in Determining Class of Empty Arrays

The class of an empty array in generated code can be different from its class in MATLAB source code.
Therefore, do not write code that relies on the class of empty matrices.

For example, consider the following code:

function y = fun(n)
x = [1;
ifn>1

X = ['a' x];
end
y=class(x);
end

fun(0) returns double in MATLAB, but char in the generated code. When the statement n > 1is
false, MATLAB does not execute x = ['a' x]. The class of x is doub'le, the class of the empty
array. However, the code generator considers all execution paths. It determines that based on the
statement x = ['a' x], the class of x is char.

Workaround

Instead of using x=[] to create an empty array, create an empty array of a specific class. For
example, use blanks (0) to create an empty array of characters.

function y = fun(n)
X = blanks(0);
ifn>1

X =['a
end
y=class(x);
end

x1;

Incompatibility with MATLAB in Matrix-Matrix Indexing

In matrix-matrix indexing, you use one matrix to index into another matrix. In MATLAB, the general
rule for matrix-matrix indexing is that the size and orientation of the result match the size and
orientation of the index matrix. For example, if A and B are matrices, size(A(B)) equals size(B).
When A and B are vectors, MATLAB applies a special rule. The special vector-vector indexing rule is
that the orientation of the result is the orientation of the data matrix. For example, if A is 1-by-5 and B
is 3-by-1, then A(B) is 1-by-3.

The code generator applies the same matrix-matrix indexing rules as MATLAB. If A and B are
variable-size matrices, to apply the matrix-matrix indexing rules, the code generator assumes that
size(A(B)) equals size(B). If, at run time, A and B become vectors and have different
orientations, then the assumption is incorrect. Therefore, when run-time error checks are enabled, an
erTor can occur.

To avoid this issue, force your data to be a vector by using the colon operator for indexing. For
example, suppose that your code intentionally toggles between vectors and regular matrices at run
time. You can do an explicit check for vector-vector indexing.
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if isvector(A) && isvector(B)

C=A(:);

D = C(B(:));
else

D = A(B);

end

The indexing in the first branch specifies that C and B( : ) are compile-time vectors. Therefore, the
code generator applies the indexing rule for indexing one vector with another vector. The orientation
of the result is the orientation of the data vector, C.

Incompatibility with MATLAB in Vector-Vector Indexing

In MATLAB, the special rule for vector-vector indexing is that the orientation of the result is the
orientation of the data vector. For example, if A is 1-by-5 and B is 3-by-1, then A(B) is 1-by-3. If,
however, the data vector A is a scalar, then the orientation of A(B) is the orientation of the index
vector B.

The code generator applies the same vector-vector indexing rules as MATLAB. If A and B are variable-
size vectors, to apply the indexing rules, the code generator assumes that the orientation of B
matches the orientation of A. At run time, if A is scalar and the orientation of A and B do not match,
then the assumption is incorrect. Therefore, when run-time error checks are enabled, a run-time
eITOr can OCCUr.

To avoid this issue, make the orientations of the vectors match. Alternatively, index single elements by
specifying the row and column. For example, A(row, column).

Incompatibility with MATLAB in Matrix Indexing Operations for Code
Generation

The following limitation applies to matrix indexing operations for code generation:
* [Initialization of the following style:

for i = 1:10

In this case, the size of M changes as the loop is executed. Code generation does not support
increasing the size of an array over time.

For code generation, preallocate M.

M = zeros(1,10);
for i = 1:10

M(i) = 5;
end

The following limitation applies to matrix indexing operations for code generation when dynamic
memory allocation is disabled:
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M(i:j) where i and j change in a loop

During code generation, memory is not dynamically allocated for the size of the expressions that
change as the program executes. To implement this behavior, use for-loops as shown:

M = ones(10,10);
for i=1:10
for j = 1:10
end
end

Note The matrix M must be defined before entering the loop.

Incompatibility with MATLAB in Concatenating Variable-Size Matrices

For code generation, when you concatenate variable-size arrays, the dimensions that are not being
concatenated must match exactly.

Differences When Curly-Brace Indexing of Variable-Size Cell Array
Inside Concatenation Returns No Elements

Suppose that:

C is a variable-size cell array.
You access the contents of ¢ by using curly braces. For example, c{2:4}.
You include the results in concatenation. For example, [a c{2:4} b].

c{I} returns no elements. Either ¢ is empty or the indexing inside the curly braces produces an
empty result.

For these conditions, MATLAB omits c{I} from the concatenation. For example, [a c{I} b]
becomes [a b]. The code generator treats c{I} as the empty array [c{I}]. The concatenation
becomes [...[c{i}]...]. This concatenation then omits the array [c{I}]. So that the properties
of [c{I}] are compatible with the concatenation [...[c{i}]...], the code generator assigns the
class, size, and complexity of [c{I}] according to these rules:

The class and complexity are the same as the base type of the cell array.

The size of the second dimension is always 0.

For the rest of the dimensions, the size of Ni depends on whether the corresponding dimension in

the base type is fixed or variable size.

« Ifthe corresponding dimension in the base type is variable size, the dimension has size 0 in the
result.

+ If the corresponding dimension in the base type is fixed size, the dimension has that size in the
result.

Suppose that ¢ has a base type with class int8 and size: 10x7x8x:?. In the generated code, the
class of [c{I}] is int8. The size of [c{I}] is Ox0x8x0. The second dimension is 0. The first and
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last dimensions are 0 because those dimensions are variable size in the base type. The third
dimension is 8 because the size of the third dimension of the base type is a fixed size 8.

Inside concatenation, if curly-brace indexing of a variable-size cell array returns no elements, the
generated code can have the following differences from MATLAB:

» Theclassof [...c{i}...] in the generated code can differ from the class in MATLAB.

When c{I} returns no elements, MATLAB removes c{I} from the concatenation. Therefore, c{I}
does not affect the class of the result. MATLAB determines the class of the result based on the
classes of the remaining arrays, according to a precedence of classes. See “Valid Combinations of
Unlike Classes”. In the generated code, the class of [c{I}] affects the class of the result of the
overall concatenation [...[c{I}]...] because the code generator treats c{I} as [c{I}]. The
previously described rules determine the class of [c{I}].

* In the generated code, the size of [c{I}] can differ from the size in MATLAB.

In MATLAB, the concatenation [c{I}] is a 0x0 double. In the generated code, the previously
described rules determine the size of [c{I}].
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In this section...

“Common Restrictions” on page 6-22

“Toolbox Functions with Restrictions for Variable-Size Data” on page 6-23

Common Restrictions

The following common restrictions apply to multiple toolbox functions, but only for code generation.
To determine which of these restrictions apply to specific library functions, see the table in “Toolbox
Functions with Restrictions for Variable-Size Data” on page 6-23.

Variable-length vector restriction

Inputs to the library function must be variable-length vectors or fixed-size vectors. A variable-length
vector is a variable-size array that has the shape 1x:n or :nx1 (one dimension is variable sized and
the other is fixed at size 1). Other shapes are not permitted, even if they are vectors at run time.

Automatic dimension restriction

This restriction applies to functions that take the working dimension (the dimension along which to
operate) as input. In MATLAB and in code generation, if you do not supply the working dimension, the
function selects it. In MATLAB, the function selects the first dimension whose size does not equal 1.
For code generation, the function selects the first dimension that has a variable size or that has a
fixed size that does not equal 1. If the working dimension has a variable size and it becomes 1 at run
time, then the working dimension is different from the working dimension in MATLAB. Therefore,
when run-time error checks are enabled, an error can occur.

For example, suppose that X is a variable-size matrix with dimensions 1x:3x:5. In the generated
code, sum(X) behaves like sum(X,2). In MATLAB, sum(X) behaves like sum(X,2) unless
size(X,2) is 1. In MATLAB, when size(X,2) is 1, sum(X) behaves like sum(X,3).

To avoid this issue, specify the intended working dimension explicitly as a constant value. For
example, sum(X, 2).

Array-to-vector restriction

The function issues an error when a variable-size array that is not a variable-length vector assumes
the shape of a vector at run time. To avoid the issue, specify the input explicitly as a variable-length
vector instead of a variable-size array.

Array-to-scalar restriction

The function issues an error if a variable-size array assumes a scalar value at run time. To avoid this
issue, specify scalars as fixed size.



Variable-Sizing Restrictions for Code Generation of Toolbox Functions

Toolbox Functions with Restrictions for Variable-Size Data

The following table list functions that have code generation restrictions for variable-size data. For
additional restrictions for these functions, and restrictions for all functions and objects supported for
code generation, see “Functions and Objects Supported for C/C++ Code Generation” on page 3-2.

Function Restrictions for Variable-Size Data
all * See “Automatic dimension restriction” on page 6-22.

* An error occurs if you pass the first argument a variable-size

matrix that is 0-by-0 at run time.
any * See “Automatic dimension restriction” on page 6-22.

* An error occurs if you pass the first argument a variable-size

matrix that is 0-by-0 at run time.
cat * Dimension argument must be a constant.
conv * See “Variable-length vector restriction” on page 6-22.

e Input vectors must have the same orientation, either both row

vectors or both column vectors.

cov * For cov(X), see “Array-to-vector restriction” on page 6-22.

Cross * Variable-size array inputs that become vectors at run time must
have the same orientation.

deconv * For both arguments, see “Variable-length vector restriction” on
page 6-22.

detrend » For first argument for row vectors only, see “Array-to-vector
restriction” on page 6-22.

diag * See “Array-to-vector restriction” on page 6-22.

diff * See “Automatic dimension restriction” on page 6-22.

* Length of the working dimension must be greater than the
difference order input when the input is variable sized. For
example, if the input is a variable-size matrix that is 3-by-5 at
run time, diff(x,2,1) works but diff(x,5,1) generates a
run-time error.

fft * See “Automatic dimension restriction” on page 6-22.
filter » For first and second arguments, see “Variable-length vector
restriction” on page 6-22.
* See “Automatic dimension restriction” on page 6-22.
hist * For second argument, see “Variable-length vector restriction” on
page 6-22.

* For second input argument, see “Array-to-scalar restriction” on

page 6-22.
histc * See “Automatic dimension restriction” on page 6-22.
ifft * See “Automatic dimension restriction” on page 6-22.
ind2sub * First input (the size vector input) must be fixed size.
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Function

Restrictions for Variable-Size Data

interpl

For the xq input, see “Array-to-vector restriction” on page 6-22.

If v becomes a row vector at run time, the array to vector
restriction on page 6-22 applies. If v becomes a column vector at
run time, this restriction does not apply.

interpft

See “Automatic dimension restriction” on page 6-22.

ipermute

Order input must be fixed size.

issorted

See “Automatic dimension restriction” on page 6-22.

magic

Argument must be a constant.
Output can be fixed-size matrices only.

max

See “Automatic dimension restriction” on page 6-22.

maxk

See “Automatic dimension restriction” on page 6-22.

mean

See “Automatic dimension restriction” on page 6-22.

An error occurs if you pass as the first argument a variable-size
matrix that is 0-by-0 at run time.

median

See “Automatic dimension restriction” on page 6-22.

An error occurs if you pass as the first argument a variable-size
matrix that is 0-by-0 at run time.

min

See “Automatic dimension restriction” on page 6-22.

mink

See “Automatic dimension restriction” on page 6-22.

mode

See “Automatic dimension restriction” on page 6-22.

An error occurs if you pass as the first argument a variable-size
matrix that is 0-by-0 at run time.

mtimes

Consider the multiplication A*B. If the code generator is aware that
A is scalar and B is a matrix, the code generator produces code for
scalar-matrix multiplication. However, if the code generator is
aware that A and B are variable-size matrices, it produces code for a
general matrix multiplication. At run time, if A turns out to be
scalar, the generated code does not change its behavior. Therefore,
when run-time error checks are enabled, a size mismatch error can
occur.

nchoosek

The second input, k, must be a fixed-size scalar.

The second input, k, must be a constant for static allocation. If
you enable dynamic allocation, the second input can be a
variable.

You cannot create a variable-size array by passing in a variable,
k, unless you enable dynamic allocation.

permute

Order input must be fixed-size.

planerot

Input must be a fixed-size, two-element column vector. It cannot
be a variable-size array that takes on the size 2-by-1 at run time.

poly

See “Variable-length vector restriction” on page 6-22.
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Function

Restrictions for Variable-Size Data

polyfit

For first and second arguments, see “Variable-length vector
restriction” on page 6-22.

prod

See “Automatic dimension restriction” on page 6-22.

An error occurs if you pass as the first argument a variable-size
matrix that is 0-by-0 at run time.

rand

For an upper-bounded variable N, rand (1, N) produces a
variable-length vector of 1x:M where M is the upper bound on N.

For an upper-bounded variable N, rand([1 N]) may produce a
variable-length vector of : 1x:M where M is the upper bound on
N.

randi

For an upper-bounded variable N, randi (imax, 1,N) produces
a variable-length vector of 1x:M where M is the upper bound on
N.

For an upper-bounded variable N, randi(imax, [1 N]) may
produce a variable-length vector of : 1x:M where M is the upper
bound on N.

randn

For an upper-bounded variable N, randn(1,N) produces a
variable-length vector of 1x:M where M is the upper bound on N.

For an upper-bounded variable N, randn([1 N]) may produce
a variable-length vector of : 1x:M where M is the upper bound on
N.

reshape

If the input is a variable-size array and the output array has at
least one fixed-length dimension, do not specify the output
dimension sizes in a size vector sz. Instead, specify the output
dimension sizes as scalar values, sz1, ..., szN. Specify fixed-
size dimensions as constants.

When the input is a variable-size empty array, the maximum
dimension size of the output array (also empty) cannot be larger
than that of the input.

roots

See “Variable-length vector restriction” on page 6-22.

shiftdim

If you do not supply the second argument, the number of shifts is
determined at compilation time by the upper bounds of the
dimension sizes. Therefore, at run time the number of shifts is
constant.

An error occurs if the dimension that is shifted to the first
dimension has length 1 at run time. To avoid the error, supply
the number of shifts as the second input argument (must be a
constant).

First input argument must have the same number of dimensions
when you supply a positive number of shifts.

sort

See “Automatic dimension restriction” on page 6-22.

std

See “Automatic dimension restriction” on page 6-22.

An error occurs if you pass a variable-size matrix with 0-by-0
dimensions at run time.
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Function Restrictions for Variable-Size Data
sub2ind * First input (the size vector input) must be fixed size.
sum * See “Automatic dimension restriction” on page 6-22.

* An error occurs if you pass as the first argument a variable-size
matrix that is 0-by-0 at run time.

trapz * See “Automatic dimension restriction” on page 6-22.

* An error occurs if you pass as the first argument a variable-size
matrix that is 0-by-0 at run time.

typecast * See “Variable-length vector restriction” on page 6-22 on first
argument.
var * See “Automatic dimension restriction” on page 6-22.

* An error occurs if you pass a variable-size matrix with 0-by-0
dimensions at run time.

vecnorm * See “Automatic dimension restriction” on page 6-22.
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Generate Code With Implicit Expansion Enabled

Implicit expansion refers to the automatic size change of compatible operands to apply element-wise
operations. Two dimensions have compatible sizes if, for every dimension, the dimension sizes of the
arrays are either the same or one of them is singleton. See “Compatible Array Sizes for Basic
Operations”.

Implicit expansion in the generated code is enabled by default. Code generated with implicit
expansion enabled might differ from code generated with implicit expansion disabled in these ways:
* QOutput size

* Additional code generation

* Performance variation

For variable-size dynamic arrays, the generated code exhibits these changes to accomplish implicit
expansion at run-time.

For fixed-size and constant arrays, because the values and sizes of the operands are known at compile
time, the code generated to calculate the implicitly expanded output does not require additional code
generation or cause performance variations.

To control implicit expansion in the generated code, see “Optimize Implicit Expansion in Generated
Code” on page 6-31.

Output Size

Implicit expansion automatically expands the operands to apply element-wise operations. For
example, consider these input types of compatible size:

a_type
b type

coder.typeof(1,[2 1]);
coder.typeof(1l,[2 inf]);

A binary operation on these two operands with implicit expansion enabled automatically expands the
second dimension of a_type to result in an output size of 2-by-Inf. With implicit expansion disabled,
the second dimension of a_type is not automatically expanded, and the output size is 2-by-1.

For existing workflows created with implicit expansion disabled in the generated code, generating
code for the same MATLAB code with implicit expansion enabled might generate size mismatch
errors or change the size of outputs from binary operations and functions. To troubleshoot size
mismatch errors, see “Diagnose and Fix Variable-Size Data Errors” on page 6-12.

Additional Code Generation

Implicit expansion enables the operands to be automatically expanded if the operand sizes are
compatible. To perform this size change, the generated code introduces code that allows the
operands to be expanded.

For example, consider the following code snippet. The function vector sum finds the sum of two
arrays.

function out = vector sum(a,b)

out = a + b;
end
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Consider the variable-size dynamic array defined here:

c_type = coder.typeof(1,[1 Inf]);

Generate code for vector_ sum by using this command:

codegen vector sum -args {c type, c_type} -config:lib -report
The generated code for this function with implicit expansion:

static void plus(emxArray real T *out,
. const emxArray real T *b, const emxArray real T *a)
{

int i;

if (a->size[1] == 1) {
out->size[l] = b->size[l];

} else {
out->size[l] = a->size[l];
}
if (a->size[l] == 1) {
loop ub = b->size[1];
}
else {
loop ub = a->size[l];
}

for (i = 0; i < loop ub; i++) {
out->data[i] = b->data[i * stride 0 1] + a->data[i * stride 1 1];

}
}
void vector sum(const emxArray real T *a, const emxArray real T *b, emxArray real T *out)
{
int i;
int loop ub;
if (b->size[l] == a->size[l]) {
i = out->size[0] * out->size[l];
out->size[0] = 1;
out->size[l] = b->size[l];
emxEnsureCapacity real T(out, 1i);
loop ub = b->size[1];
for (i = 0; i < loop ub; i++) {
out->data[i] = b->datal[i] + a->datali];
}
} else {
plus(out, b, a);
}
}

The generated code for this function without implicit expansion:

void vector sum(const emxArray real T *a,
. const emxArray real T *b, emxArray real T *out){
int i;
int loop_ub;
i = out->size[0] * out->size[l];
out->size[0] =

]
1;
out->size[1l] b-

>size[1];
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emxEnsureCapacity real T(out, 1i);
loop ub = b->size[1];
for (1 = 0; 1 < loop ub; i++) {
out->data[i] = b->datal[i] + a->datal[i];
}
}

With implicit expansion enabled, the code generator creates a supporting function, in this case plus,
to carry out the size change and to calculate the output.

In most cases, the supporting function carrying out implicit expansion is named after the binary
operation it is assisting. In the previous example, if the expression out = a + b is changed to out
= a - b, the name of the supporting function changes to minus.

Some supporting functions might also be named as expand_op, where op refers to the binary
operation. In the previous example, if the expression out = a + b is replaced with out =
max(a,b), the name of the supporting function in the generated code changes to expand max.

If multiple operations in an expression require implicit expansion, the generated code includes a
supporting function that is named binary expand_op. The supporting functions change the size of
the operand and apply the binary operations.

If you want to apply specific binary operations and functions without implicit expansion, use
coder.sameSizeBinaryOp. The code generated to apply this function does not include additional
code to expand the operands. The output of this function does not expand the operands in MATLAB.
This function does not support scalar expansion. Operands must be of the same size.

If you want to disable implicit expansion inside a function for all binary operations within that
function in the generated code, call coder.noImplicitExpansionInFunction in the required
function. Implicit expansion in MATLAB code is still enabled.

Performance Variation

Code generated with implicit expansion enabled might perform differently than when implicit
expansion is disabled. Depending on the input to the generated code that uses implicit expansion, the
code might take longer to evaluate the output.

If the generated code does not match the performance requirements of your workflow due to implicit
expansion, generate code for your project by turning off implicit expansion for specific binary
operations, specific function bodies, or for your whole project. See “Optimize Implicit Expansion in
Generated Code” on page 6-31.

Note Before disabling implicit expansion, ensure that the external code does not use implicit
expansion. Disabling implicit expansion for an entire project might cause errors when generating
code if your project includes MATLAB code from external sources.

See Also
coder.noImplicitExpansionInFunction | coder.sameSizeBinaryOp
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Related Examples

. “Compatible Array Sizes for Basic Operations”
. “Diagnose and Fix Variable-Size Data Errors” on page 6-12
. “Optimize Implicit Expansion in Generated Code” on page 6-31
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Optimize Implicit Expansion in Generated Code

Implicit expansion in the generated code is enabled by default. The code generator introduces
modifications in the generated code to perform implicit expansion. The changes in the generated
code might result in additional code to expand the operands. The expansion of the operands might
affect the performance of the generated code. See “Generate Code With Implicit Expansion Enabled
on page 6-27.

”

Implicit expansion might change the size of the outputs from the supported operators and functions
causing size and type mismatch errors in your workflow.

For fine-grained control of where implicit expansion is enabled in the generated code, use the
following functions in your MATLAB code:

* coder.noImplicitExpansionInFunction
* coder.sameSizeBinaryOp

For example, consider this code snippet. The function vector sum finds the sum of two arrays of
compatible sizes.

function out = vector sum(a,b)

out = b + a;
end

The types of operands a and b are defined as:

a_type
b_type

coder.typeof(1,[2 1]) %size: 2x1
coder.typeof(1,[2 Inf]) %size: 2x:inf

Without implicit expansion, the size of the out variable is calculated as 2x1.

R
4 @8 £

Edit In Package Export Report
MATLAE Code =  Information

EDIT SHARE

Function: vector_sum
1 function out S
2 out - BINE: < sie 2% 1
3 end Class double
Complex Mo

b + a

With implicit expansion, the size of the variable out is calculated as 2x: ?.
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R
4 8 £

Edit In Package Export Report
MATLAE Code =  Information

EDIT SHE cxrRESSION INFC

Function: vector_sum b+ a
1 function out 5 spe

2=
2 put = » Class: double
3 end Complex: Mo

The dimensions shown in bold imply the possible use of implicit expansion.

These code snippets outline the changes in the generated code for the function vector sum, while

implicit expansion is disabled and enabled. To generate the code, the types of operands a and b are
defined as:

a_type
b type

coder.typeof(1l,[1 Inf]) %size: 1x:inf
coder.typeof(1l,[1 Inf]) %size: 1x:inf
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Generated Code With Implicit Expansion
Disabled

Generated Code With Implicit Expansion
Enabled

void vector sum(const emxArray real T *a, (
emxArray real T *out)

{
int 1i;
int loop_ ub;
i = out->size[0] * out->size[l];
out->size[0] = 1;
out->size[l] = b->size[l];
emxEnsureCapacity real T(out, 1i);
loop ub = b->size[1];
for (i = 0; 1 < loop ub; i++) {

out->data[i] = b->data[i] + a->data[il];

}

}

cristiemxdidaplosdemkAtiray real T *out, cons
const emxArray real T *a)

{
int 1i;
if (a->size[l] == 1) {
out->size[l] = b->size[l];
} else {
out->size[l] = a->size[l];
}
if (a->size[l] == 1) {
loop _ub = b->size[l];
} else {
loop ub = a->size[l];
}
for (i = 0; 1 < loop ub; i++) {
out->data[i] = b->data[i * stride 0 1]
}
}

void vector sum(const emxArray real T *a, d
emxArray real T *out)
{
int i;
int loop ub;
if (b->size[l] == a->size[l]) {
i out->size[0] * out->size[l];
out->size[0] = 1;
out->size[l] = b->size[l];
emxEnsureCapacity real T(out, 1i);
loop ub = b->size[l];
for (1 0; 1 < loop ub; i++) {
out->data[i] = b->data[i] + a->datal]
}
else {
plus(out, b, a);

Disable Implicit Expansion in Specified Function by Using
coder.nolmplicitExpansioninFunction

If you require implicit expansion in your project but not in specific functions, disable implicit
expansion for the generated code of that function by calling
coder.noImplicitExpansionInFunction within the function.

For example, the code generated for vector sum does not apply implicit expansion.
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MATLAB Code

Generated Code with
coder.sameSizeBinaryOp

function out = vector sum(a,b)
coder.noImplicitExpansionInFunction();

out = a + b;

end

a = coder.typeof(1l,[1 Inf]) %size: 1x:inf
b = coder.typeof(1l,[1 Inf]) %size: 1x:inf

codegen vector sum -launchreport
-args {a,b} -config:lib

void vector sum(const emxArray real T *a,
const emxArray real T *b, emxArray real T *

{

int 1i;
int loop ub;
i = out->size[0] * out->size[l];

out->size[0] = 1;

out->size[l] = a->size[l];

emxEnsureCapacity real T(out, 1i);

loop _ub = a->size[l];

for (i = 0; 1 < loop _ub; i++) {
out->data[i] = a->data[i] + b->data[il];

}

}

Note coder.noImplicitExpansionInFunction does not disable implicit expansion in your
MATLAB code. It disables implicit expansion only in the generated code.

Disable Implicit Expansion for Specific Binary Operation by Using

coder.sameSizeBinaryOp

Use the function coder.sameSizeBinaryOp to perform an error check to ensure that the operands
are the same size and prevent the code generator from generating implicitly expanded code for that

function.

For example, this code snippet applies the plus operation by using coder.sameSizeBinaryOp

without implicit expansion.

MATLAB Code

Generated Code

function out = vector sum(a,b)

out = coder.sameSizeBinaryOp(@plus, a, b);
end

a = coder.typeof(1l,[1 Inf]) %size: 1x:inf
b = coder.typeof(1l,[1 Inf]) %size: 1x:inf

codegen vector sum -launchreport
-args {a,b} -config:lib

void vector sum(const emxArray real T *a,
const emxArray real T *b, emxArray real T *
{
int i;
int loop ub;
i = out->size[0] * out->size[l];
out->size[0] = 1;
out->size[l] = a->size[l];
emxEnsureCapacity real T(out, i);
loop ub = a->size[l];
for (1 = 0; 1 < loop ub; i++) {
out->data[i] = a->data[i] + b->datalil;

}

}

coder.sameSizeBinaryOp does not support scalar expansion. Operands given to
coder.sameSizeBinaryOp must be of the same size.

out)
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Disable Implicit Expansion in your Project

If you do not require implicit expansion in your generated code or do not want the modifications to
affect your generated code, turn it off by setting the EnableImplicitExpansion flag in your
coder.config object to false. This flag is set to true by default.

cfg = coder.config;
cfg.EnableImplicitExpansion = false;

Disable implicit expansion in your Simulink model by setting the model-wide parameter Enable
Implicit Expansion in MATLAB functions to false. Alternatively, use this command:

set param(gcs, 'EnableImplicitExpansion', false);

Note Before turning off implicit expansion, ensure that the external code does not use implicit
expansion. Disabling implicit expansion for an entire project might cause errors when generating
code if your project includes MATLAB code from external sources.

See Also
coder.noImplicitExpansionInFunction | coder.sameSizeBinaryOp

Related Examples

. “Generate Code With Implicit Expansion Enabled” on page 6-27
. “Compatible Array Sizes for Basic Operations”

. “Diagnose and Fix Variable-Size Data Errors” on page 6-12

6-35



6 Code Generation for Variable-Size Data

Representation of Arrays in Generated Code
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The code generator produces C/C++ array definitions that depend on the array element type and
whether the array uses static or dynamic memory allocation. Use the generated array
implementations to interface your arrays with the generated code.

Memory allocation for arrays require different implementations:

» For a fixed-size array or a variable-size array whose size is bounded within a predefined memory
threshold, the generated C/C++ definition consists of a fixed-size array of elements and a size
vector that stores the total number of array elements. In some cases, the fixed-size element array
and the size vector are stored within a structure. The memory for this array comes from the
program stack and is statically allocated.

» For an array whose size is unbounded at compile time, or whose bounds exceed the predefined
threshold, the generated C definition consists of a data structure called an emxArray. The
generated C++ definition consists of a coder: :array class template.

The predefined threshold size (in bytes) is specified in your configuration objects. The default value of
the parameter is 65536. See DynamicMemoryAllocationThreshold in coder.MexCodeConfig,
coder.CodeConfig, or coder.EmbeddedCodeConfig.

For dynamically allocated arrays, the run-time allocated size is set based on the current array size.
During program execution, as run-time allocated size is exceeded, the generated code reallocates
additional memory space from the heap and adds it to the dynamic array storage.

This table lists a few typical cases for array representation in the generated code.

Algorithm Description and MATLAB Function Generated C/C++ Code

Array Size

Create a fixed-size 1-by-500 row |function B = create_vec® S#cpdeigercreate vecOd(double B[50P])

vector. The array is the output B = zeros(1,500); {

of the MATLAB function end memset (&B[0], 0, 500U * sizeof(double
}

The generated code allocates
memory to a fixed-size vector on
the program stack.

The array is the input to the
function in the generated code.

Create a fixed-size 1-by-20 row |function create vecl(B) S#codegeh create vecl(double B dajtal], int B
vector. Declare the array as A = zeros(1,20); {
variable-size with bounds at 500 |coder.varsize('A", [1 500], [6] 11t 1;

elements. Assign this variable- (B = A B_size[B] = 1;
size array to the input array. Cle 3 SNz = 2t _
for (i =0; i < 20; i++) {
This array is bound within the } B datali] = 1.8;
size threshold and is the input }
to the function in the generated
code.

Note The generated code
includes the inputs in the
function parameters.
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Algorithm Description and MATLAB Function Generated C/C++ Code
Array Size

Create a local fixed-size 1- function B = create vec2() %f#Codegen

by-20000 row vector. Declare  |A = ones(1,20000); _
the array as variable-size with ~ |coder.varsize("A",[1 30000], @ djreate vec2(emxArray real T *B)

B =1[1A]; {
bounds at 30,000 elements. ond double *B data;
. . int i;
The variable-size array exceeds i = Bossize[0] * B->size[1]];
the predefined dynamic memory B->size[0] = 1:
allocation threshold. This array B->size[l] = 26001;
is stored on heap memory. emxEnsureCapacity real T(B|, i);
B data = B->data;
The generated code includes the B data[0] = 1.0;
output array in the function for (i = 0; i < 20000; i++) {
parameter_ deata[i + 1] = 1.0;
}
}
C++:

void create vec2(coder::array<double, 2
{
B.set size(1l, 20001);
B[O] = 1.0;
for (int i{0}; i < 20000; [i++) {
B[i + 1] = 1.0;
}

}
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Algorithm Description and
Array Size

MATLAB Function

Generated C/C++ Code

Create an array that has the
size determined by an
unbounded integer input.

The generated array size is
unknown and unbounded at
compile time.

create vec3(n)

function y =
1,n,'int8"');

y = ones(

PEcodegen

void create vec3(double n, e
{
int 1i;
int loop ub tmp;
signed char *y data;

i =y->size[0] * y->size[lf];

y->size[0] = 1;
loop ub tmp = (int)n;
y->size[l] = (int)n;
emxEnsureCapacity int8 T(y
y data = y->data;

for (1 = 0; i < loop_ub_tm
y data[i] = 1;
}
}
C++:

void create vec3(double n, c

{
int loop ub tmp;
loop ub_tmp = static cast<

y.set size(1l, loop ub_tmp)|;

for (int i{0}; i < loop_ub
y[il = 1;
}
}

mxArray int

, 1);

p; i++) {

oder::array

int>(n);

| tmp; i++)

To learn about the emxArray data structure, see “Use C Arrays in the Generated Function

Interfaces” on page 32-3.

To learn about the coder: :array class template, see “Use Dynamically Allocated C++ Arrays in
Generated Function Interfaces” on page 32-15.

Customize Interface Generation

By default, the generated C++ code uses the coder: :array template to implement dynamically
allocated arrays. You can choose to generate C++ code that uses the C style emxArray data
structure to implement dynamically allocated arrays. To generate C style emxArray data structures,

do either of the following:

* In a code configuration object (coder.MexCodeConfig, coder.CodeConfig, or
coder.EmbeddedCodeConfig), set the DynamicMemoryAllocationInterface parameter to

'c'.

* Alternatively, In the MATLAB Coder app, on the Memory tab, set Dynamic memory allocation
interface to Use C style EmxArray.

To create dynamically allocated arrays for variable-size arrays in the generated code, do either of the

following:
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* Set theDynamicMemoryAllocation flag to 'Always' or 'Threshold'.
* Alternatively, in the MATLAB Coder App, on the Memory tab, select the required option in the
drop-down list for the Dynamic memory allocation for variable size arrays option.

By default, arrays that are bounded within a threshold size do not use dynamic allocation in the
generated code. Alternatively, you can disable dynamic memory allocation and change the dynamic
memory allocation threshold. See “Control Memory Allocation for Variable-Size Arrays” on page 6-4.

See Also
coder.config | coder.MexCodeConfig | coder.CodeConfig | coder.EmbeddedCodeConfig

Related Examples
. “Use C Arrays in the Generated Function Interfaces” on page 32-3
. “Use Dynamically Allocated C++ Arrays in Generated Function Interfaces” on page 32-15

6-39



6 Code Generation for Variable-Size Data

Control Memory Allocation for Fixed-Size Arrays

6-40

Dynamic memory allocation for fixed-size arrays allocates memory for the array on the heap instead

of allocating memory on the program stack. Consider using dynamic memory allocation when:

* The fixed-size arrays are large and you do not want to allocate memory on the stack.

* Your target hardware memory is limited and you do not want to allocate memory for the arrays on
the program stack.

For larger arrays, you can significantly reduce storage requirements. Dynamic memory allocation
might result in slower execution of the generated code.

Enable Dynamic Memory Allocation for All Fixed-Size Arrays

By default, dynamic memory allocation for fixed-size arrays is disabled. To enable it:

* In a configuration object for code generation, set the
DynamicMemoryAllocationForFixedSizeArrays parameter to 'Always'.

» Alternatively, in the app, under Memory settings, set Dynamic memory allocation fixed-sized
arrays to 'Always'.

The code generator dynamically allocates memory on the heap for all fixed-size arrays whose size is
greater than 64 bytes.

Enable Dynamic Memory Allocation for Arrays Bigger Than a Threshold

Instead of allocating all fixed-size arrays dynamically on the heap, you can specify the threshold size
above which memory is dynamically allocated. To instruct the code generator to use dynamic memory
allocation for fixed-size arrays whose size is greater than or equal to the threshold:

* In the configuration object, set the DynamicMemoryAllocationForFixedSizeArrays to
'Threshold'.

* In the MATLAB Coder app, in the Memory settings, set Dynamic memory allocation for fixed-
sized arrays to For arrays with max size at or above threshold.

The default dynamic memory allocation threshold is 64 kilobytes. To change the threshold:

* In a configuration object for code generation, set the DynamicMemoryAllocationThreshold.

* In the MATLAB Coder app, in the Memory settings, set Dynamic memory allocation
threshold.

See Also
coder.EmbeddedCodeConfig | coder.MexCodeConfig | coder.CodeConfig

Related Examples

. “Control Memory Allocation for Variable-Size Arrays” on page 6-4
. “Representation of Arrays in Generated Code” on page 6-36
. “Use C Arrays in the Generated Function Interfaces” on page 32-3
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. “Use Dynamically Allocated C++ Arrays in Generated Function Interfaces” on page 32-15
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Resolve Error: Size Mismatches

Issue

The code generator produces size mismatch errors when array sizes are incompatible or implicit
expansion is unavailable.

Most binary operators and functions in MATLAB and generated code support numeric arrays that
have compatible sizes. Two inputs have compatible sizes if, for every dimension, the sizes of the
inputs are either the same or one of them is 1. In the simplest cases, two array sizes are compatible if
they are exactly the same or if one is a scalar. For example:

magic(4) + ones(4,1);

% where magic(4) = ones(4,1) =
% 16 2 3 13 1
% 5 11 10 8 1
% 9 7 6 12 1
% 4 14 15 1 1
ans =

17 3 4 14

6 12 11 9

10 8 7 13

5 15 16 2

The second array implicitly expands to match the dimensions of the first matrix. For more
information, see “Compatible Array Sizes for Basic Operations”.

Implicit expansion might be unavailable while performing binary operations on arrays of compatible
size if any the following conditions are true :

* Your function scope includes the coder.noImplicitExpansionInFunction function.
* You use the coder.sameSizeBinaryOp function to carry out the binary operation.
* You turn off implicit expansion for your project.

Size mismatches or unavailability of implicit expansion generates the following error:

%Size mismatch between two arrays
Size mismatch (size [10][1] ~= size [1][10])

When the above conditions are true for structure fields and cell elements, the code generator
produces the following errors respectively:

%Size mismatch in structure fields
Size mismatch (size [10][1] ~= size [1]1[10]) in field StructField

%Size mismatch in cell elements
Size mismatch (size [10][1] ~= size [1]1[10]) in element cellElement.

Possible Solutions

Verify that, in binary operations where you enable implicit expansion, the operations are in the scope
of functions. Check for these conditions:
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* Array size compatibility.

* Binary operations in the scope of functions that call coder.noImplicitExpansionInFunction.

* coder.sameSizeBinaryOp does not implicitly expand its operands or support scalar expansion.

» Ifyou have turned off implicit expansion for the whole project, all operations that require implicit
expansion generate an error.

Perform Binary Operations on Arrays of Compatible Sizes

If you must carry out a binary operation on arrays of differing sizes, make sure that sizes are
compatible and implicit expansion is enabled in the function scope. See “Compatible Array Sizes for
Basic Operations”.

Call Binary Operation Without coder.nolmplicitExpansioninFunction

If you must include coder.noImplicitExpansionInFunction in your function, call the required
binary operation in another function where implicit expansion is enabled.

Call Binary Operation Without coder.sameSizeBinaryOp

If you do not want implicit expansion for a specific operation, provide input arguments that are of
same size to coder.sameSizeBinaryOp. coder.sameSizeBinaryOp does not allow scalar
expansion and generates an error if the input arguments are not of the same size.

Enable Implicit Expansion for Project

If enabling implicit expansion does not affect your project, consider enabling it by setting the
EnableImplicitExpansion property in your code configuration object to true.

If you need implicit expansion for specific operations, consider using coder.sameSizeBinaryOp or
coder.noImplicitExpansionInFunction to prevent the other operations from implicitly
expanding. See “Optimize Implicit Expansion in Generated Code” on page 6-31.

See Also
coder.noImplicitExpansionInFunction | coder.sameSizeBinaryOp

Related Examples

. “Compatible Array Sizes for Basic Operations”

. “Generate Code With Implicit Expansion Enabled” on page 6-27
. “Optimize Implicit Expansion in Generated Code” on page 6-31
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* “Structure Definition for Code Generation” on page 7-2

» “Structure Operations Allowed for Code Generation” on page 7-3
* “Define Scalar Structures for Code Generation” on page 7-4

* “Define Arrays of Structures for Code Generation” on page 7-6

* “Index Substructures and Fields” on page 7-8

* “Assign Values to Structures and Fields” on page 7-10
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Structure Definition for Code Generation

7-2

To generate efficient standalone code for structures, you must define and use structures differently
than you normally would when running your code in the MATLAB environment:

What's Different

More Information

Use a restricted set of operations.

“Structure Operations Allowed for Code
Generation” on page 7-3

Observe restrictions on properties and values of
scalar structures.

“Define Scalar Structures for Code Generation”
on page 7-4

Make structures uniform in arrays.

“Define Arrays of Structures for Code
Generation” on page 7-6

Reference structure fields individually during
indexing.

“Index Substructures and Fields” on page 7-8

Avoid type mismatch when assigning values to
structures and fields.

“Assign Values to Structures and Fields” on page
7-10
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Structure Operations Allowed for Code Generation

To generate efficient standalone code for MATLAB structures, you are restricted to the following
operations:

* Index structure fields using dot notation
* Define primary function inputs as structures
* Pass structures to local functions
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Define Scalar Structures for Code Generation

In this section...

“Restrictions When Defining Scalar Structures by Assignment” on page 7-4
“Adding Fields in Consistent Order on Each Control Flow Path” on page 7-4

“Restriction on Adding New Fields After First Use” on page 7-4

Restrictions When Defining Scalar Structures by Assignment

When you define a scalar structure by assigning a variable to a preexisting structure, you do not need
to define the variable before the assignment. However, if you already defined that variable, it must
have the same class, size, and complexity as the structure you assign to it. In the following example, p
is defined as a structure that has the same properties as the predefined structure S:

struct('a', 0, 'b', 1, 'c', 2);
S;

Adding Fields in Consistent Order on Each Control Flow Path

When you create a structure, you must add fields in the same order on each control flow path. For
example, the following code generates a compiler error because it adds the fields of structure x in a
different order in each if statement clause:

function y = fcn(u) %#codegen

ifu>0
X.a = 10;
X.b = 20;
else
Xx.b = 30; % Generates an error (on variable x)
X.a = 40;
end

y = X.a + x.b;

In this example, the assignment to x.a comes before x.b in the first if statement clause, but the
assignments appear in reverse order in the else clause. Here is the corrected code:

function y = fcn(u) S%#codegen

ifu>0
x.a = 10;
X.b = 20;
else
X.a = 40;
X.b = 30;
end

y = X.a + X.b;

Restriction on Adding New Fields After First Use

You cannot add fields to a structure after you perform the following operations on the structure:



Define Scalar Structures for Code Generation

* Reading from the structure
* Indexing into the structure array
» Passing the structure to a function

For example, consider this code:

.c = 10; % Defines structure and creates field c
y = X; % Reads from structure
x.d = 20; % Generates an error

In this example, the attempt to add a new field d after reading from structure x generates an error.

This restriction extends across the structure hierarchy. For example, you cannot add a field to a
structure after operating on one of its fields or nested structures, as in this example:

function y = fcn(u) %#codegen
10;

.C;
20; % Generates an error

X

X < X
oIl o

In this example, the attempt to add a new field d to structure x after reading from the structure's
field ¢ generates an error.

7-5



7 Code Generation for MATLAB Structures

Define Arrays of Structures for Code Generation

In this section...

“Ensuring Consistency of Fields” on page 7-6
“Using repmat to Define an Array of Structures with Consistent Field Properties” on page 7-6
“Defining an Array of Structures by Using struct” on page 7-6

“Defining an Array of Structures Using Concatenation” on page 7-7

Ensuring Consistency of Fields

For code generation, when you create an array of MATLAB structures, corresponding fields in the
array elements must have the same size, type, and complexity.

Once you have created the array of structures, you can make the structure fields variable-size by
using coder.varsize. See “Declare Variable-Size Structure Fields”.

Using repmat to Define an Array of Structures with Consistent Field
Properties

You can create an array of structures from a scalar structure by using the MATLAB repmat function,
which replicates and tiles an existing scalar structure:

1 Create a scalar structure, as described in “Define Scalar Structures for Code Generation” on
page 7-4.
Call repmat, passing the scalar structure and the dimensions of the array.

3  Assign values to each structure using standard array indexing and structure dot notation.

For example, the following code creates X, a 1-by-3 array of scalar structures. Each element of the
array is defined by the structure s, which has two fields, a and b:

XXX XXX Xunn -
nuwnmnmnmmn3s~s--~-

f e~~~ o~~~ .
= WNPFPWNR I To -

Defining an Array of Structures by Using struct

To create an array of structures using the struct function, specify the field value arguments as cell
arrays. Each cell array element is the value of the field in the corresponding structure array element.
For code generation, corresponding fields in the structures must have the same type. Therefore, the
elements in a cell array of field values must have the same type.
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For example, the following code creates a 1-by-3 structure array. For each structure in the array of
structures, a has type double and b has type char.

s = struct('a', {12 3}, 'b', {'a' 'b' 'c'});

Defining an Array of Structures Using Concatenation

To create a small array of structures, you can use the concatenation operator, square brackets

( [ 1), tojoin one or more structures into an array. See “Creating, Concatenating, and Expanding
Matrices”. For code generation, the structures that you concatenate must have the same size, class,
and complexity.

For example, the following code uses concatenation and a local function to create the elements of a 1-
by-3 structure array:

W= [ sab(1,2) sab(2,3) sab(4,5) ];

function s = sab(a,b)

s.a = a;
s.b = b;
See Also

MATLAB Function

Related Examples

. “Define Scalar Structures for Code Generation” on page 7-4
. “Define and Use Structure Parameters” (Simulink)
. “Create Structures in MATLAB Function Blocks” (Simulink)
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Index Substructures and Fields

Use these guidelines when indexing substructures and fields for code generation:
Reference substructure field values individually using dot notation

For example, the following MATLAB code uses dot notation to index fields and substructures:

substructl.al
substructl.a2

15.2;
int8([1 2;3 41);

mystruct = struct('elel',20.5,'ele2',single(100),
'ele3',substructl);

substruct2 = mystruct;
substruct2.ele3.a2 = 2*(substructl.a2);

The generated code indexes elements of the structures in this example by resolving symbols as
follows:

Dot Notation Symbol Resolution

substructl.al Field al of local structure substructl

substruct2.ele3.al Value of field al of field ele3, a substructure of local structure
substruct?2

substruct2.ele3.a2(1,1) Value in row 1, column 1 of field a2 of field ele3, a substructure of local
structure substruct?2

Reference field values individually in structure arrays

To reference the value of a field in a structure array, you must index into the array to the structure of
interest and then reference that structure's field individually using dot notation, as in this example:

y = X(1).a % Extracts the value of field a
of the first structure in array X

%

To reference all the values of a particular field for each structure in an array, use this notation in a
for loop, as in this example:

s.a = 0;

s.b = 0;

X = repmat(s,1,5);

for i = 1:5
X(i).a = i;
X(i).b = i+1;

end

This example uses the repmat function to define an array of structures, each with two fields a and b
as defined by s. See “Define Arrays of Structures for Code Generation” on page 7-6 for more
information.
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Do not reference fields dynamically

You cannot reference fields in a structure by using dynamic names, which express the field as a
variable expression that MATLAB evaluates at run time (see “Generate Field Names from Variables”).
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Assign Values to Structures and Fields

7-10

When assigning values to a structure, substructure, or field for code generation, use these guidelines:

Field properties must be consistent across structure-to-structure assignments

If: Then:

Assigning one structure to another structure. Define each structure with the same number,
type, and size of fields.

Assigning one structure to a substructure of a Define the structure with the same number, type,

different structure and vice versa. and size of fields as the substructure.

Assigning an element of one structure to an The elements must have the same type and size.

element of another structure.

For structures with constant fields, do not assign field values inside control flow constructs

In the following code, the code generator recognizes that the structure fields s.a and s.b are
constants.

function y = mystruct()
s.a = 3;

s.b = 5;

y = zeros(s.a,s.b);

If a field of a structure is assigned inside a control flow construct, the code generator does not
recognize that s.a and s.b are constant. Consider the following code:

function y = mystruct(x)

s.a = 3;

if x > 1
s.b = 4;

else
s.b = 5;

end

y = zeros(s.a,s.b);

If variable-sizing is enabled, y is treated as a variable-size array. If variable-sizing is disabled, y, the
code generator reports an error.

Do not assigh mxArrays to structures

You cannot assign mxArrays to structure elements; convert mxArrays to known types before code
generation (see “Working with mxArrays” on page 20-9).

Do not assign handle classes or sparse arrays to global structure variables

Global structure variables cannot contain handle objects or sparse arrays.



Code Generation for Categorical Arrays




8 Code Generation for Categorical Arrays

Code Generation for Categorical Arrays

8-2

In this section...

“Define Categorical Arrays for Code Generation” on page 8-2
“Allowed Operations on Categorical Arrays” on page 8-2
“MATLAB Toolbox Functions That Support Categorical Arrays” on page 8-3

Categorical arrays store data with values from a finite set of discrete categories. You can specify an
order for the categories, but it is not required. A categorical array provides efficient storage and
manipulation of nonnumeric data, while also maintaining meaningful names for the values.

When you use categorical arrays with code generation, adhere to these restrictions:

Define Categorical Arrays for Code Generation

For code generation, use the categorical function to create categorical arrays. For example,
suppose the input argument to your MATLAB function is a numeric array of arbitrary size whose
elements have values of either 1, 2, or 3. You can convert these values to the categories small,
medium, and large and turn the input array into a categorical array, as shown in this code.

function ¢ = foo(x) %#codegen
Cc = categorical(x,1:3,{'small’, 'medium', 'large'});
end

Allowed Operations on Categorical Arrays

For code generation, you are restricted to the operations on categorical arrays listed in this table.

Operation Example Notes
assignment operator: = £ o) 2regorteal(1:3,1:3, Lsnatl, medivl Godesgeneration does not

support using the assignment
operator = to:

* Delete an element.

* Expand the size of a
categorical array.

* Add a new category, even
when the array is not

protected.
relational operators: < > <= §f==ci'g‘i?oii?;§}:3' ‘Ordinal’,true);  |Code generation supports all
>= == ~= ' relational operators.
cast to numeric type gozbigf‘z?gﬁfa“1=3)? Code generation supports

casting categorical arrays to
arrays of double- or single-
precision floating-point
numbers, or to integers.
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Operation Example Notes

conversion to text ¢ = categorical(l:3,1:3, {'small’, ‘nediulGodegeneration does not
cl = cellstr(c(1l)); % One element .
€2 = cellstr(c); % Entire array support using the char or

string functions to convert
categorical values to text.

To convert one or more
elements of a categorical array
to text, use the cellstr

function.
indexing operation ‘i gaﬁgglr%ca“l=3'1=3'{'Sma“"'medi“ Codesgeneration supports
clidx); indexing by position, linear
idx = logical([1l 1 0]); g g g a g
c(idn); indexing, and logical indexing.
1 cl = categorical(1:3,1:3,{'small’, 'medi daréehb i
concatenation c2 = categorical(4:6,[2 1 4],{ 'medium', ggﬁg%@%@&g@ﬁgpport?
c = [cl e2l; concatenation of categorical

arrays along any dimension.

MATLAB Toolbox Functions That Support Categorical Arrays

For code generation, you can use categorical arrays with these MATLAB toolbox functions:

* addcats

+ cat

* categorical
* categories
+ cellstr

* countcats

* ctranspose

* double

. eq

. ge

« gt

* histcounts
* horzcat

e int8

+ 1intl6
 int32

* int64

* intersect
* liscategory
e iscolumn

* isempty

* isequal
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* isequaln

* ismatrix

* 1ismember

e isordinal

* isprotected
o isrow

* isscalar

* issorted

* 1issortedrows
e isundefined
* 1isvector

+ le

* length
« 1t

* max

« mergecats

* min

* ndims

* ne

* numel

* permute

* removecats
* renamecats
* reordercats

* reshape
* setcats
¢ setdiff
* setxor
* single
* size

* sort

e sortrows
* transpose

* uint8
* uintle
e uint32
* uint64
* union
* unique
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e vertcat
See Also

More About

. “Define Categorical Array Inputs” on page 8-6
. “Categorical Array Limitations for Code Generation” on page 8-9
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Define Categorical Array Inputs
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You can define categorical array inputs at the command line or in the MATLAB Coder app.
Programmatic specification of categorical input types by using preconditioning (assert statements)
is not supported.

Define Categorical Array Inputs at the Command Line

Use one of these procedures:

* “Provide an Example Categorical Array Input” on page 8-6
* “Provide a Categorical Array Type” on page 8-6
* “Provide a Constant Categorical Array Input” on page 8-6

Alternatively, if you have a test file that calls your entry-point function with example inputs, you can
determine the input types by using coder.getArgTypes.

Provide an Example Categorical Array Input

Use the -args option:

C = categorical({'r','g','b'});
codegen myFunction -args {C}

Provide a Categorical Array Type
To provide a type for a categorical array to codegen:
1 Define a categorical array. For example:
C = categorical({'r','g','b'});
2  Create a type from C.

t = coder.typeof(C);
3  Pass the type to codegen by using the -args option.

codegen myFunction -args {t}
Provide a Constant Categorical Array Input

To specify that a categorical array input is constant, use coder.Constant with the -args option:

C = categorical({'r','g','b'});
codegen myFunction -args {coder.Constant(C)}

Define Categorical Array Inputs in the MATLAB Coder App

Use one of these procedures:

* “Automatically Define Input Types by Using the App” on page 24-4
* “Define Input Parameter by Example by Using the App” on page 24-6
* “Define or Edit Input Parameter Type by Using the App” on page 24-14
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Representation of Categorical Arrays

A coder type object for a categorical array describes the object and its properties. Use
coder.typeof or pass categorical as a string scalar to coder.newtype.

The coder type object displays a succinct description of the object properties while excluding internal
state values. Nonconstant properties display their type and size, while constant properties display
only their values. For example:

t = categorical({'r','g','b'});
tType = coder.typeof(t)

The representation of variable t is stored in coder type object tType.
tType =

matlab.coder.type.CategoricalType
1x3 categorical
Categories : 3x1 homogeneous cell
Ordinal : 1x1 logical
Protected : 1x1 logical

If your workflow requires the legacy representation of coder type objects, use the getCoderType
function on the variable that has the new representation of your class or object. See “Legacy
Representation of Coder Type Objects” on page 4-15.

Resize Object Properties by Using coder.resize

You can resize most objects by using coder. resize. You can resize objects, its properties and create
arrays within the properties.

For a categorical coder object, you can resize the object properties:

t = categorical({'r','g','b"'});
tType = coder.typeof(t);
tType.Categories = coder.resize(tType.Categories, [3 1],[1 0])

This code resizes the Categories property to be upper-bounded at 3 for the first dimension.
tType =

matlab.coder.type.CategoricalType
1x3 categorical
Categories : :3x1 homogeneous cell
Ordinal : 1x1 logical
Protected : 1x1 logical

You can also resize the object by using coder. resize. See “Edit and Represent Coder Type Objects
and Properties” on page 4-14.

See Also
categorical | coder.Constant | coder.typeof
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More About
. “Code Generation for Categorical Arrays” on page 8-2
. “Categorical Array Limitations for Code Generation” on page 8-9
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Categorical Array Limitations for Code Generation

When you create categorical arrays in MATLAB code that you intend for code generation, you must
specify the categories and elements of each categorical array by using the categorical function.
See “Categorical Arrays”.

For categorical arrays, code generation does not support the following inputs and operations:

Arrays of MATLAB objects.
Sparse matrices.

Duplicate category names when you specify them using the categoryNames input argument of
the categorical function.

Growth by assignment. For example, assigning a value beyond the end of an array produces an
error.

function ¢ = foo() %#codegen
c = categorical(1:3,1:3,{'small', 'medium', 'large'});
c(4) = 'medium';

end

Adding a category. For example, specifying a new category by using the = operator produces an
error, even when the categorical array is unprotected.

function ¢ = foo() %#codegen
c = categorical(1:3,1:3,{'small', 'medium', 'large'});
c(l) = 'extra-large';

end

Deleting an element. For example, assigning an empty array to an element produces an error.

function ¢ = foo() S%#codegen
c = categorical(1:3,1:3,{'small', 'medium', 'large'});
c(1) = [1;
end
Converting categorical values to text by using the char or string functions. To convert elements
of a categorical array to text, use the cellstr function.

Limitations that apply to classes also apply to categorical arrays. For more information, see “MATLAB
Classes Definition for Code Generation” on page 15-2.

See Also
categorical | cellstr

More About

“Code Generation for Categorical Arrays” on page 8-2
“Define Categorical Array Inputs” on page 8-6
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* “Code Generation for Cell Arrays” on page 9-2
* “Control Whether a Cell Array Is Variable-Size” on page 9-5
* “Define Cell Array Inputs” on page 9-7

“Cell Array Limitations for Code Generation” on page 9-8
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Code Generation for Cell Arrays

When you generate code from MATLAB code that contains cell arrays, the code generator classifies
the cell arrays as homogeneous or heterogeneous. This classification determines how a cell array is
represented in the generated code. It also determines how you can use the cell array in MATLAB
code from which you generate code.

When you use cell arrays in MATLAB code that is intended for code generation, you must adhere to
certain restrictions. See “Cell Array Limitations for Code Generation” on page 9-8.

Homogeneous vs. Heterogeneous Cell Arrays

A homogeneous cell array has these characteristics:

» The cell array is represented as an array in the generated code.

* All elements have the same properties. The type associated with the cell array specifies the
properties of all elements rather than the properties of individual elements.

* The cell array can be variable-size.

* You can index into the cell array with an index whose value is determined at run time.
A heterogeneous cell array has these characteristics:

» The cell array is represented as a structure in the generated code. Each element is represented as
a field of the structure.

* The elements can have different properties. The type associated with the cell array specifies the
properties of each element individually.

* The cell array cannot be variable-size.

* You must index into the cell array with a constant index or with for-loops that have constant
bounds.

The code generator uses heuristics to determine the classification of a cell array as homogeneous or
heterogeneous. It considers the properties (class, size, complexity) of the elements and other factors,
such as how you use the cell array in your program. Depending on how you use a cell array, the code
generator can classify a cell array as homogeneous in one case and heterogeneous in another case.
For example, consider the cell array {1 [2 3]}. The code generator can classify this cell array as a
heterogeneous 1-by-2 cell array. The first element is double scalar. The second element is a 1-by-2
array of doubles. However, if you index into this cell array with an index whose value is determined at
run time, the code generator classifies it as a homogeneous cell array. The elements are variable-size
arrays of doubles with an upper bound of 2.

Controlling Whether a Cell Array Is Homogeneous or Heterogeneous

For cell arrays with certain characteristics, you cannot control the classification as homogeneous or
heterogeneous:

+ If the elements have different classes, the cell array must be heterogeneous.

» If the cell array is variable-size, it must be homogeneous.

» Ifyou index into the cell array with an index whose value is determined at run time, the cell array
must be homogeneous.

9-2



Code Generation for Cell Arrays

Name

MZ

For other cell arrays, you can control the classification as homogeneous or heterogeneous.
To control the classification of cell arrays that are entry-point function inputs:

* At the command line, use the coder.CellType methods makeHomogeneous and
makeHeterogeneous.

* In the MATLAB Coder app, select cell (Homogeneous) or cell (Heterogeneous) from the type
menu. See “Define or Edit Input Parameter Type by Using the App” on page 24-14.

To control the classification of cell arrays that are not entry-point function inputs:

» If the cell array is fixed-size, you can force an otherwise homogeneous cell array to be
heterogeneous by using coder.cstructname. For example:

function y = mycell()
%#codegen
c = {12 3};
coder.cstructname(c, 'myname');
y = c;
end
» If the cell array elements have the same class, you can force a cell array to be homogeneous by
using coder.varsize. See “Control Whether a Cell Array Is Variable-Size” on page 9-5.

Naming the Structure Type That Represents a Heterogeneous Cell
Array in the Generated Code

The code generator represents a heterogeneous cell array as a structure in the generated code. You
can name the generated structure type. You cannot name the fields of the structure.

If the cell array is an entry-point function input, see “Define Cell Array Inputs” on page 9-7. If the
cell array is not an entry-point function input, use coder.cstructname in the MATLAB function. For
example:

function y = mycell()
%#codegen

c ={1 'a'};
coder.cstructname(c, 'myname');
y =¢;

end

Cell Arrays in Reports

To see whether a cell array is homogeneous or heterogeneous, view the variable in the code
generation report.

For a homogeneous cell array, the report has one entry that specifies the properties of all elements.
The notation {: } indicates that all elements of the cell array have the same properties.

Type Size Class

Output 1=3 cell

Local 1=3 cell
1=1 double
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Name

M2

1
I1J

121
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For a heterogeneous cell array, the report has an entry for each element. For example, for a
heterogeneous cell array ¢ with two elements, the entry for c{1} shows the properties for the first

element. The entry for c{2} shows the properties for the second element.

Type Size
Output 1=2
Local 1=2

1=1
1=1

See Also
coder.CellType | coder.varsize | coder.cstructname

More About

. “Control Whether a Cell Array Is Variable-Size” on page 9-5
. “Cell Array Limitations for Code Generation” on page 9-8

. “Code Generation Reports” on page 29-7

Class
cell
cell

double

char
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Control Whether a Cell Array Is Variable-Size

The code generator classifies a variable-size cell array as homogeneous. The cell array elements must
have the same class. In the generated code, the cell array is represented as an array.

If a cell array is an entry-point function input, to make it variable-size:

At the command line, you can use the coder.typeof function or the coder.newtype function to
create a type for a variable-size cell array. For example, to create a type for a cell array whose first
dimension is fixed and whose second dimension has an upper bound of 10, use this code:

t = coder.typeof({1 2 3}, [1 10], [0 1])

See “Specify Variable-Size Cell Array Inputs” on page 27-57.

In the MATLAB Coder app, select Homogeneous cell array as the type of the input. For the
variable-size dimension, specify that it is unbounded or has an upper bound.

If a cell array is not an entry-point function input, to make it variable-size:

Create the cell array by using the cell function. For example:

function z = mycell(n, j)
%#codegen
x = cell(1l,n);
for i = 1:n
x{i} = 1i;
end
z = x{i};
end

For code generation, when you create a variable-size cell array by using cell, you must adhere to
certain restrictions. See “Definition of Variable-Size Cell Array by Using cell” on page 9-9.

Grow the cell array. For example:

function z = mycell(n)
%#codegen
c = {1 2 3};
for i = 1:n
c{end + 1} = 1;
end
z = c{n};
end

Force the cell array to be variable-size by using coder.varsize. Consider this code:

function y = mycellfun()
s#codegen

c = {1 2 3};
coder.varsize('c', [1 10]);
y =¢;

end

Without coder.varsize, c is fixed-size with dimensions 1-by-3. With coder.varsize, cis
variable-size with an upper bound of 10.

Sometimes, using coder.varsize changes the classification of a cell array from heterogeneous
to homogeneous. Consider this code:
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function y = mycell()
s#codegen

c = {1 [2 31};

y = c{2};

end

The code generator classifies ¢ as heterogeneous because the elements have different sizes. c is
fixed-size with dimensions 1-by-2. If you use coder.varsize with ¢, it becomes homogeneous.
For example:

function y = mycell()

%#codegen

c={112 31};

coder.varsize('c', [1 10], [0 1]);
y = c{2};

end

C becomes a variable-size homogeneous cell array with dimensions 1-by-:10.

To force ¢ to be homogeneous, but not variable-size, specify that none of the dimensions vary. For
example:

function y = mycell()

%#codegen

c={11[2 31};

coder.varsize('c', [1 2], [0 0]);
y = c{2};

end

See Also
coder.CellType | coder.varsize

More About

. “Code Generation for Cell Arrays” on page 9-2

. “Cell Array Limitations for Code Generation” on page 9-8
. “Code Generation for Variable-Size Arrays” on page 6-2

9-6



Define Cell Array Inputs

Define Cell Array Inputs

To define types for cell arrays that are inputs to entry-point functions, use one of these approaches:

To Define Types: See

At the command line “Specify Cell Array Inputs at the Command Line”
on page 27-54

Programmatically in the MATLARB file “Define Input Properties Programmatically in the
MATLAB File” on page 27-63

In the MATLAB Coder app “Automatically Define Input Types by Using the

App” on page 24-4

“Define Input Parameter by Example by Using the
App” on page 24-6

“Define or Edit Input Parameter Type by Using
the App” on page 24-14

See Also
coder.CellType

More About

. “Code Generation for Cell Arrays” on page 9-2
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Cell Array Limitations for Code Generation
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When you use cell arrays in MATLAB code that is intended for code generation, you must adhere to
these restrictions:

* “Cell Array Element Assignment” on page 9-8

» “Variable-Size Cell Arrays” on page 9-9

* “Definition of Variable-Size Cell Array by Using cell” on page 9-9

* “Cell Array Indexing” on page 9-12

* “Growing a Cell Array by Using {end + 1}” on page 9-13

* “Cell Array Contents” on page 9-14

* “Passing Cell Arrays to External C/C++ Functions” on page 9-14

Cell Array Element Assignment

You must assign a cell array element on all execution paths before you use it. For example:

function z = foo(n)
%#codegen

c = cell(1,3);
ifn<l1

c{2}

1;

else
c{2}
end

z = c{2};
end

1]
o}

The code generator considers passing a cell array to a function or returning it from a function as a
use of all elements of the cell array. Therefore, before you pass a cell array to a function or return it
from a function, you must assign all of its elements. For example, the following code is not allowed
because it does not assign a value to c{2} and c is a function output.

function ¢ = foo()
s#codegen

c = cell(1,3);
c{1} 1;

c{3} 3;

end

The assignment of values to elements must be consistent on all execution paths. The following code is
not allowed because y{2} is double on one execution path and char on the other execution path.

function y = foo(n)
y = cell(1,3)

if n > 1;
y{1l} =1
y{2} = 2;
y{3} = 3;
else
y{1} = 10;
y{2} = 'a’;
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y{3} = 30;
end

Variable-Size Cell Arrays

* coder.varsize is not supported for heterogeneous cell arrays.

» Ifyou use the cell function to define a fixed-size cell array, you cannot use coder.varsize to
specify that the cell array has a variable size. For example, this code causes a code generation
error because x = cell(1l,3) makes x a fixed-size,1-by-3 cell array.

x = cell(1,3);
coder.varsize('x',[1 5])

You can use coder.varsize with a cell array that you define by using curly braces. For example:

x = {12 3};
coder.varsize('x"',[1 5])

» To create a variable-size cell array by using the cell function, use this code pattern:

function mycell(n)

%#codegen

x = cell(1l,n);

for 1 = 1:n
x{i} = 1i;

end

end

See “Definition of Variable-Size Cell Array by Using cell” on page 9-9.

To specify upper bounds for the cell array, use coder.varsize.

function mycell(n)

%#codegen
x = cell(1l,n);
for i = 1:n

x{i} = 1i;
coder.varsize('x',[1,20]);
end
end

Definition of Variable-Size Cell Array by Using cell

For code generation, before you use a cell array element, you must assign a value to it. When you use
cell to create a variable-size cell array, for example, cell(1,n), MATLAB assigns an empty matrix
to each element. However, for code generation, the elements are unassigned. For code generation,
after you use cell to create a variable-size cell array, you must assign all elements of the cell array
before any use of the cell array. For example:

function z = mycell(n, j)
s#codegen
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x = cell(1l,n);

for i = 1:n
x{i} = i;

end

z =x{j}

end

The code generator analyzes your code to determine whether all elements are assigned before the
first use of the cell array. If the code generator detects that some elements are not assigned, code
generation fails with an error message. For example, modify the upper bound of the for-loop to j.

function z = mycell(n, j)

%#codegen

x = cell(1l,n);

for i = 1:j %<- Modified here
x{i} = 1i;

end

z = x{j};

end

With this modification and with inputs j less than n, the function does not assign values to all of the
cell array elements. Code generation produces the error:

Unable to determine that every element of 'x{:}' is assigned
before this line.

Sometimes, even though your code assigns all elements of the cell array, the code generator reports
this message because the analysis does not detect that all elements are assigned. See “Unable to
Determine That Every Element of Cell Array Is Assigned” on page 37-10.

To avoid this error, follow these guidelines:
* When you use cell to define a variable-size cell array, write code that follows this pattern:

function z = mycell(n, j)
s#codegen
x = cell(1l,n);
for i = 1:n
x{i} = 1i;
end
z =x{j};
end

Here is the pattern for a multidimensional cell array:

function z = mycell(m,n,p)
s#codegen

x = cell(m,n,p);

for 1 = 1:m

for j =1:n
for k = 1:p
x{i,j,k} = i+j+k;
end
end
end
z = x{m,n,p};
end
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Increment or decrement the loop counter by 1.

Define the cell array within one loop or one set of nested loops. For example, this code is not
allowed:

function z = mycell(n, j)
x = cell(1l,n);
for i = 1:5
x{i} = 5;
end
for i = 6:n
x{i} = 5;
end
z = x{j};
end
Use the same variables for the cell dimensions and loop initial and end values. For example, code
generation fails for the following code because the cell creation uses n and the loop end value
uses m:

function z = mycell(n, j)
x = cell(1l,n);
m=n;
for i = 1:m
x{i} = 2;
end
z =x{j};
end

Rewrite the code to use n for the cell creation and the loop end value:

mycell(n, j)

Create the cell array with this pattern:
x = cell(1,n)

Assign the cell array to a field of a structure or a property of an object by initializing a temporary
variable with the required cell. For example:

t = cell(1,n)

for i = 1:n
t{i} = i+1;

end

myObj.prop = t;

Do not assign a cell array to a field of a structure or a property of an object directly. For example,
this code is not allowed:

myObj.prop = cell(1l,n);
for i = 1:n

myObj.prop{i} = i+1;
end
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Do not use the cell function inside the cell array constructor {}. For example, this code is not
allowed:

x = {cell(1,n)};

The cell array creation and the loop that assigns values to the cell array elements must be
together in a unique execution path. For example, the following code is not allowed.

function z = mycell(n)
if n > 3

c = cell(l,n);
else

c = cell(n,1);
end
for i = 1:n

c{i} = 1i;
end
z = c{n};
end

To fix this code, move the assignment loop inside the code block that creates the cell array.

function z = cellerr(n)
if n> 3
c = cell(
for i = 1:
c{i} = i;
end
else
c = cell(n,1);
for 1 = 1:n
c{i} = i;
end

1,n);
n

end
z = c{n};
end

Cell Array Indexing

You cannot index cell arrays by using smooth parentheses(). Consider indexing cell arrays by
using curly braces{} to access the contents of the cell.

You must index into heterogeneous cell arrays by using constant indices or by using for-loops
with constant bounds.

For example, the following code is not allowed.

x = {1, 'mytext'};
disp(x{randi});

You can index into a heterogeneous cell array in a for-loop with constant bounds because the
code generator unrolls the loop. Unrolling creates a separate copy of the loop body for each loop
iteration, which makes the index in each loop iteration constant. However, if the for-loop has a
large body or it has many iterations, the unrolling can increase compile time and generate
inefficient code.

If A and B are constant, the following code shows indexing into a heterogeneous cell array in a
for-loop with constant bounds.
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x = {1, 'mytext'};
for i = A:B

disp(x{i});
end

Growing a Cell Array by Using {end + 1}

To grow a cell array X, you can use X{end + 1}. For example:

X = {1 2};
X{end + 1} = 'a’';

When you use {end + 1} to grow a cell array, follow these restrictions:

* Useonly {end + 1}. Do notuse {end + 2}, {end + 3}, and so on.

* Use {end + 1} with vectors only. For example, the following code is not allowed because X is a
matrix, not a vector:

X= {1 2; 3 4};
X{end + 1} = 5;

* Use {end + 1} only with a variable. In the following code, {end + 1} does not cause {1 2 3}
to grow. In this case, the code generator treats {end + 1} as an out-of-bounds index into X{2}.

X={a {123}};
X{2}{end + 1} = 4;

* When {end + 1} grows a cell array in a loop, the cell array must be variable-size. Therefore, the
cell array must be homogeneous on page 9-2.

This code is allowed because X is homogeneous.

X =A{1 2};
for i=1:n

X{end + 1} = 3;
end

This code is not allowed because X is heterogeneous.

X=4{1 'a'" 2 'b'};
for i=1l:n

X{end + 1} = 3;
end
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Cell Array Contents

Cell arrays cannot contain mxarrays. In a cell array, you cannot store a value that an extrinsic
function returns.

Passing Cell Arrays to External C/C++ Functions

You cannot pass a cell array to coder. ceval. If a variable is an input argument to coder.ceval,
define the variable as an array or structure instead of as a cell array.

See Also

More About

. “Code Generation for Cell Arrays” on page 9-2
. “Differences Between Generated Code and MATLAB Code” on page 2-6

9-14
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* “Code Generation for Datetime Arrays” on page 10-2
* “Define Datetime Array Inputs” on page 10-5
» “Datetime Array Limitations for Code Generation” on page 10-7
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Code Generation for Datetime Arrays

In this section...

“Define Datetime Arrays for Code Generation” on page 10-2
“Allowed Operations on Datetime Arrays” on page 10-2
“MATLAB Toolbox Functions That Support Datetime Arrays” on page 10-2

The values in a datetime array represent points in time using the proleptic ISO calendar.

When you use datetime arrays with code generation, adhere to these restrictions.

Define Datetime Arrays for Code Generation

For code generation, use the datetime function to create datetime arrays. For example, suppose
the input arguments to your MATLAB function are numeric arrays whose values indicate the year,
month, day, hour, minute, and second components for a point in time. You can create a datetime
array from these input arrays.

function d = foo(y,mo,d,h,mi,s) %#codegen
d = datetime(y,mo,d,h,mi,s);
end

Allowed Operations on Datetime Arrays

For code generation, you are restricted to the operations on datetime arrays listed in this table.

Operation Example Notes

g . = d = datetime(2019,1:12,1,12,0,0); 1

Assignment operator: ST o Gt e T, £ S Code gene}‘atlon doe; not
support using the assignment

operator = to:

* Delete an element.

* Expand the size of a
datetime array.

Relational operators: < > <= f::jg'fi;‘ifeé%g}?'1’12'1'12'0'0)? Code generation supports

>= == ~= ' relational operators.

Indexing operation I faﬁ%’?‘?(zelg'1=12'1'12'°'°); Code generation supports
d(idx); indexing by position, linear
idx = logical([1l 1 0]); 9 g g g g
d(1dn); indexing, and logical indexing.

1 dl = datetime(2019,1:6,1,12,0,0); ]

Concatenation 0 G T T B B Code geneljatlon supporFs

d = [d1 d2]; concatenation of datetime

arrays.

MATLAB Toolbox Functions That Support Datetime Arrays

For code generation, you can use datetime arrays with these MATLAB toolbox functions:

*+ cat
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colon

ctranspose

datetime
datevec
diff

eq

ge

gt

hms
horzcat
hour
interpl
intersect
iscolumn
isempty
isequal
isequaln
isfinite
isinf
ismatrix
ismember
isnat
isreal
isrow
isscalar
issorted

issortedrows

isvector
le
length
linspace
1t

max

mean

min
minus
minute
NaT
ndims
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* ne
* numel

* permute

*+ plus

* posixtime
* repmat

* reshape

+ setdiff

* setxor

* size

* sort

* sortrows
+ topkrows
* transpose
* union

* unique

* vertcat

* ymd

See Also

More About

. “Define Datetime Array Inputs” on page 10-5
. “Datetime Array Limitations for Code Generation” on page 10-7
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Define Datetime Array Inputs

You can define datetime array inputs at the command line or in the MATLAB Coder app.
Programmatic specification of datetime input types by using preconditioning (assert statements)
is not supported.

Define Datetime Array Inputs at the Command Line

Use one of these procedures:

* “Provide an Example Datetime Array Input” on page 10-5
* “Provide a Datetime Array Type” on page 10-5
* “Provide a Constant Datetime Array Input” on page 10-5

Alternatively, if you have a test file that calls your entry-point function with example inputs, you can
determine the input types by using coder.getArgTypes.

Provide an Example Datetime Array Input

Use the -args option:

D = datetime(2019,1:12,1,12,0,0);
codegen myFunction -args {D}

Provide a Datetime Array Type
To provide a type for a datetime array to codegen:
1 Define a datetime array. For example:

D = datetime(2019,1:12,1,12,0,0);
2 (Create a type from D.

t = coder.typeof(D);
3  Pass the type to codegen by using the -args option.

codegen myFunction -args {t}
Provide a Constant Datetime Array Input

To specify that a datetime array input is constant, use coder.Constant with the -args option:

D = datetime(2019,1:12,1,12,0,0);
codegen myFunction -args {coder.Constant(C)}

Define Datetime Array Inputs in the MATLAB Coder App

Use one of these procedures:

* “Automatically Define Input Types by Using the App” on page 24-4
* “Define Input Parameter by Example by Using the App” on page 24-6
» “Define or Edit Input Parameter Type by Using the App” on page 24-14
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Representation of Datetime Arrays

A coder type object for a datetime array describes the object and its properties. Use coder. typeof
or pass datetime as a string scalar to coder.newtype.

The coder type object displays a succinct description of the object properties while excluding internal
state values. Nonconstant properties display their type and size, while constant properties display
only their values. For example:

t = datetime(2019,1:12,1,12,0,0);
tType = coder.typeof(t)

The representation of variable t is stored in coder type object tType.
tType =

matlab.coder.type.DatetimeType
1x12 datetime
Format : 1x0 char

TimeZone : 1x0 char

If your workflow requires the legacy representation of coder type objects, use the getCoderType
function on the variable that has the new representation of your class or object. See “Legacy
Representation of Coder Type Objects” on page 4-15.

Resize Object Properties by Using coder.resize

You can resize most objects by using coder. resize. You can resize objects, its properties and create
arrays within the properties.

For a datetime coder object, you can resize the object properties:

t = datetime(2019,1:12,1,12,0,0);
tType = coder.typeof(t)
tType.Format = coder.resize(tType.Format, [1 12])

This code resizes the Format property to be a 1x12 char property.
tType =
matlab.coder.type.DatetimeType
1x12 datetime

Format : 1x12 char
TimeZone : 1x0 char

You can also resize the object by using coder. resize. See “Edit and Represent Coder Type Objects
and Properties” on page 4-14.

See Also
datetime | NaT | coder.Constant | coder. typeof

More About
. “Code Generation for Datetime Arrays” on page 10-2
. “Datetime Array Limitations for Code Generation” on page 10-7
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Datetime Array Limitations for Code Generation

When you create datetime arrays in MATLAB code that you intend for code generation, you must
specify the values by using the datetime function. See “Dates and Time”.

For datetime arrays, code generation does not support the following inputs and operations:

Text inputs. For example, specifying a character vector as the input argument produces an error.

function d = foo() %#codegen
d = datetime('2019-12-01");
end

The 'Format' name-value pair argument. You cannot specify the display format by using the
datetime function, or by setting the Format property of a datetime array. To use a specific
display format, create a datetime array in MATLAB, then pass it as an input argument to a
function that is intended for code generation.

The 'TimeZone' name-value pair argument and the TimeZone property. When you use
datetime arrays in code that is intended for code generation, they must be unzoned.

Setting time component properties. For example, setting the Hour property in the following code
produces an error:

d = datetime;
d.Hour = 2;

Growth by assignment. For example, assigning a value beyond the end of an array produces an
error.

function d = foo() %#codegen
d = datetime(2019,1:12,1,12,0,0);
d(13) = datetime(2020,1,1,12,0,0);
end

Deleting an element. For example, assigning an empty array to an element produces an error.
function d = foo() %#codegen
d = datetime(2019,1:12,1,12,0,0);

d(1) = [1;
end

Converting datetime values to text by using the char, cellstr, or string functions.

Limitations that apply to classes also apply to datetime arrays. For more information, see “MATLAB
Classes Definition for Code Generation” on page 15-2.

See Also
datetime | NaT

More About

“Code Generation for Datetime Arrays” on page 10-2
“Define Datetime Array Inputs” on page 10-5
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* “Code Generation for Duration Arrays” on page 11-2
* “Define Duration Array Inputs” on page 11-6
* “Duration Array Limitations for Code Generation” on page 11-8
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In this section...

“Define Duration Arrays for Code Generation” on page 11-2
“Allowed Operations on Duration Arrays” on page 11-2
“MATLAB Toolbox Functions That Support Duration Arrays” on page 11-3

The values in a duration array represent elapsed times in units of fixed length, such as hours,
minutes, and seconds. You can create elapsed times in terms of fixed-length (24-hour) days and fixed-
length (365.2425-day) years.

You can add, subtract, sort, compare, concatenate, and plot duration arrays.

When you use duration arrays with code generation, adhere to these restrictions.

Define Duration Arrays for Code Generation

For code generation, use the duration function to create duration arrays. For example, suppose the
input arguments to your MATLAB function are three numeric arrays of arbitrary size whose elements
specify lengths of time as hours, minutes, and seconds. You can create a duration array from these
three input arrays.

function d = foo(h,m,s) S#codegen
d = duration(h,m,s);
end

You can use the years, days, hours, minutes, seconds, and milliseconds functions to create
duration arrays in units of years, days, hours, minutes, or seconds. For example, you can create an
array of hours from an input numeric array.

function d = foo(h) S%#codegen
d = hours(h);
end

Allowed Operations on Duration Arrays

For code generation, you are restricted to the operations on duration arrays listed in this table.

Operation Example Notes

assignment operator: = d = duration(1:3,0,0); Code generation does not
d(1) = hours(5); support using the assignment
d = duration(1:3,0,0); operator = to:

d(1) = hours(5);
* Delete an element.

* Expand the size of a duration

array.
relational operators: < > <= d = duration(1:3,0,0); Code generation supports
>S= == ~= tf = d(1) < d(2); relational operators.

d = duration(1:3,0,0);

tf = d(1) < d(2);
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Operation Example Notes

indexing operation d = duration(1:3,0,0); Code generation supports
idx = [1 2]; indexing by position, linear
d(idx);

idx = logical([1 1 0]);
d(idx);

d = duration(1:3,0,0);

indexing, and logical indexing.

idx = [1 2];
d(idx);
idx = logical([1l 1 0]);
d(idx);

concatenation dl = duration(1: 0 0); Code generation supports
d2 = duration(4,30,0); concatenation of duration
d = [d1l d2];

dl = duration(1:3,0,0);
d2 = duration(4,30,0);
d = [dl d2];

arrays.

MATLAB Toolbox Functions That Support Duration Arrays

For code generation, you can use duration arrays with these MATLAB toolbox functions:

abs
cat
ceil
colon
cummax
cummin
cumsum

ctranspose

datevec
days
diff
duration
eps

€q

floor

ge

gt

hms
horzcat
hours
interpl
intersect
iscolumn
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* 1isempty
+ isequal
* isequaln
o isfinite
e isinf

e dismatrix
* ismember

e isnan
 isreal
e isrow

* 1isscalar
» issorted
* issortedrows
» 1isvector

* ldivide
« le

* length

* linspace
o 1t

* max

* mean

* median

* milliseconds
* min

* minus

* minutes

* mldivide

* mode

* mrdivide

* mod

* mtimes
* ndims

* ne

* nnz

* numel

* permute
* plus

* repmat
* rdivide
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* rem
* reshape
* seconds
* setdiff
+ setxor

e sign

* size

* sort

* sortrows
* std

* sum

* times

+ transpose

* uminus

* union

* unique

* uplus

* vertcat

* years

See Also

More About

. “Define Duration Array Inputs” on page 11-6

. “Duration Array Limitations for Code Generation” on page 11-8
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Define Duration Array Inputs

You can define duration array inputs at the command line or in the MATLAB Coder app.
Programmatic specification of duration input types by using preconditioning (assert statements) is
not supported.

Define Duration Array Inputs at the Command Line

Use one of these procedures:

* “Provide an Example Duration Array Input” on page 11-6
* “Provide a Duration Array Type” on page 11-6
* “Provide a Constant Duration Array Input” on page 11-6

Alternatively, if you have a test file that calls your entry-point function with example inputs, you can
determine the input types by using coder.getArgTypes.

Provide an Example Duration Array Input

Use the -args option:

D = duration(1:3,0,0);
codegen myFunction -args {D}

Provide a Duration Array Type
To provide a type for a duration array to codegen:
1 Define a duration array. For example:

D = duration(1:3,0,0);
2 (Create a type from D.

t = coder.typeof(D);
3  Pass the type to codegen by using the -args option.

codegen myFunction -args {t}
Provide a Constant Duration Array Input

To specify that a duration array input is constant, use coder.Constant with the -args option:

D = duration(1:3,0,0);
codegen myFunction -args {coder.Constant(C)}

Define Duration Array Inputs in the MATLAB Coder App

Use one of these procedures:

* “Automatically Define Input Types by Using the App” on page 24-4
* “Define Input Parameter by Example by Using the App” on page 24-6
» “Define or Edit Input Parameter Type by Using the App” on page 24-14
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Representation of Duration Arrays

A coder type object for a duration array describes the object and its properties. Use coder.typeof
or pass duration as a string scalar to coder.newtype.

The coder type object displays a succinct description of the object properties while excluding internal
state values. Nonconstant properties display their type and size, while constant properties display
only their values. For example:

tType = coder.newtype('duration')

A representation of an empty duration variable is stored in coder type object tType.
tType =
matlab.coder.type.DurationType

1x1 duration
Format : 1x8 char

If your workflow requires the legacy representation of coder type objects, use the getCoderType
function on the variable that has the new representation of your class or object. See “Legacy
Representation of Coder Type Objects” on page 4-15.

Resize duration Properties by Editing Object Properties

You can resize most objects by editing the object properties. You can resize duration objects, its
properties and create arrays within the properties.

For a duration coder object, you can resize the object properties:
t = duration((1:3),0,0);

tType = coder.typeof(t)
tType.Format = 'DD/MM/YYYY'

This code resizes the Format property to be a 1x10 char property.
tType =
matlab.coder.type.DurationType

1x3 duration
Format : 1x10 char

You can also resize the object by using coder. resize. See “Edit and Represent Coder Type Objects
and Properties” on page 4-14.

See Also
duration | coder.Constant | coder.typeof

More About
. “Code Generation for Duration Arrays” on page 11-2
. “Duration Array Limitations for Code Generation” on page 11-8
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Duration Array Limitations for Code Generation

11-8

When you create duration arrays in MATLAB code that you intend for code generation, you must
specify the durations by using the duration, years, days, hours, minutes, seconds, or
milliseconds functions. See “Dates and Time”.

For duration arrays, code generation does not support the following inputs and operations:

Text inputs. For example, specifying a character vector as the input argument produces an error.

function d = foo() %#codegen
d = duration('01:30:00"');
end

Growth by assignment. For example, assigning a value beyond the end of an array produces an
error.

function d = foo() %#codegen
d = duration(1:3,0,0);
d(4) = hours(4);

end

Deleting an element. For example, assigning an empty array to an element produces an error.

function d = foo() S%#codegen
d = duration(1:3,0,0);
d(1) = [1;

end

Converting duration values to text by using the char, cellstr, or string functions.

Limitations that apply to classes also apply to duration arrays. For more information, see “MATLAB
Classes Definition for Code Generation” on page 15-2.

See Also
duration | years | days | hours | minutes | seconds | milliseconds

More About

“Code Generation for Duration Arrays” on page 11-2
“Define Duration Array Inputs” on page 11-6
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* “Code Generation for Tables” on page 12-2
* “Define Table Inputs” on page 12-5
* “Table Limitations for Code Generation” on page 12-8
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In this section...

“Define Tables for Code Generation” on page 12-2
“Allowed Operations on Tables” on page 12-2
“MATLAB Toolbox Functions That Support Tables” on page 12-3

The table data type is a data type suitable for column-oriented or tabular data that is often stored as
columns in a text file or in a spreadsheet. Tables consist of rows and column-oriented variables. Each
variable in a table can have a different data type and a different size with one restriction: each
variable must have the same number of rows. For more information, see “Tables”.

When you use tables with code generation, adhere to these restrictions.

Define Tables for Code Generation

For code generation, use the table function. For example, suppose the input arguments to your
MATLAB function are three arrays that have the same number of rows and a cell array that has
variable names. You can create a table that contains these arrays as table variables.

function T = foo(A,B,C,vnames) S%#codegen
T = table(A,B,C, 'VariableNames',6 vnames);
end

You can use the array2table, cell2table, and struct2table functions to convert arrays, cell
arrays, and structures to tables. For example, you can convert an input cell array to a table.

function T = foo(C,vnames) %#codegen

T = cell2table(C, 'VariableNames',6 vnames);
end

For code generation, you must supply table variable names when you create a table. Table variable

names do not have to be valid MATLAB identifiers. The names must be composed of ASCII characters,
but can include any ASCII characters (such as commas, dashes, and space characters).

Allowed Operations on Tables

For code generation, you are restricted to the operations on tables listed below.

Operation Example Notes
assignment operator: = T G ﬁbleé{*'”' ‘VariableNames',vnames) | Code generation does not

support using the assignment
operator = to:

* Delete a variable or a row.
e Add a variable or a row.
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Operation

Example

Notes

indexing operation

T = table(A,B,C, 'VariableNames', vnames)
T(1:5,1:3);

Code generation supports
indexing by position, variable or
row name, and logical indexing.

Code generation supports:
» Table indexing with smooth

parentheses, ().

* Content indexing with curly
braces, {}.

¢ Dot notation to access a
table variable.

concatenation

Tl = table(A,B,C, 'VariableNames',vnames
T2 table(D,E,F, 'VariableNames',vnames
T=[T1; T2];

Code generation supports table
concatenation.

» For vertical concatenation,
tables must have variables
that have the same names in
the same order.

» For horizontal concatenation,
tables must have the same
number of rows. If the tables
have row names, then they
must have the same row
names in the same order.

MATLAB Toolbox Functions That Support Tables

For code generation, you can use tables with these MATLAB toolbox functions:

addvars
array2table
cat
cell2table
convertvars
height
horzcat
innerjoin
intersect
isempty
ismember
issortedrows
join
mergevars
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* movevars
* ndims

* numel

* outerjoin
* removevars
* renamevars
* rows2vars

e setdiff
e setxor
* size

* sortrows
+ splitvars

e stack
 struct2table
« table

+ table2array
+ table2cell

* table2struct
* union

* unique

* unstack

* varfun

+ vertcat

¢ width

See Also

More About

. “Define Table Inputs” on page 12-5
. “Table Limitations for Code Generation” on page 12-8
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Define Table Inputs

You can define table inputs at the command line or in the MATLAB Coder app. Programmatic
specification of table input types by using preconditioning (assert statements) is not supported.

Define Table Inputs at the Command Line

Use one of these procedures:

* “Provide an Example Table Input” on page 12-5
* “Provide a Table Type” on page 12-5
* “Provide a Constant Table Input” on page 12-5

Alternatively, if you have a test file that calls your entry-point function with example inputs, you can
determine the input types by using coder.getArgTypes.

Provide an Example Table Input
Use the -args option:

T = table(A,B,C, 'VariableNames',vnames);
codegen myFunction -args {T}

Provide a Table Type
To provide a type for a table to codegen:
1 Define a table. For example:

T = table(A,B,C, 'VariableNames', vnames);

2 Create a type from T.

t = coder.typeof(T);
3  Pass the type to codegen by using the -args option.

codegen myFunction -args {t}
Provide a Constant Table Input

To specify that a table input is constant, use coder.Constant with the -args option:

T = table(A,B,C, 'VariableNames',6 vnames);
codegen myFunction -args {coder.Constant(T)}

Define Table Inputs in the MATLAB Coder App

Use one of these procedures:

* “Automatically Define Input Types by Using the App” on page 24-4
* “Define Input Parameter by Example by Using the App” on page 24-6
* “Define or Edit Input Parameter Type by Using the App” on page 24-14
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Representation of Tables

A coder type object for a table describes the object and its properties. Use coder.typeof or pass
table as a string scalar to coder.newtype.

The coder type object displays a succinct description of the object properties while excluding internal
state values. Nonconstant properties display their type and size, while constant properties display
only their values. For example:

A=1[123]';
B=1[456]";
C=1[7829]";
t = table(A,B,C);

tType = coder.typeof(t)

The representation of variable t is stored in coder type object tType.
tType =

matlab.coder.type.TableType
3x3 table
Data : 1x3 homogeneous cell
Description : 1x0 char
UserData : Ox0 double
DimensionNames : {'Row'} {'Variables'}
VariableNames : {'A'} {'B'} {'C'}
VariableDescriptions : 1x3 homogeneous cell
VariableUnits : 1x3 homogeneous cell
VariableContinuity : 1x3 matlab.internal.coder.tabular.Continuity
RowNames : 0x0 homogeneous cell

If your workflow requires the legacy representation of coder type objects, use the getCoderType
function on the variable that has the new representation of your class or object. See “Legacy
Representation of Coder Type Objects” on page 4-15.

Resize Object Properties by Using coder.resize

You can resize most objects by using coder. resize. You can resize objects, its properties and create
arrays within the properties.

For a tab'le coder object, you can resize the object properties:

A=1[123]";
B=1[456]"';
C=1[7809]";
t = table(A,B,C);

tType = coder.typeof(t)
tType.Description = coder.resize(tType.Description,[1 12],[0 1])

This code resizes the Description property to be a 1x:12 char property which has an upper bound
of 12.

tType =
matlab.coder.type.TableType

3x3 table
Data : 1x3 homogeneous cell
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Description : 1x:12 char
UserData : Ox0 double
DimensionNames : {'Row'} {'Variables'}
VariableNames : {'A'} {'B'} {'C'}
VariableDescriptions : 1x3 homogeneous cell
VariableUnits : 1x3 homogeneous cell
VariableContinuity : 1x3 matlab.internal.coder.tabular.Continuity
RowNames : 0x0 homogeneous cell

You can also resize the object by using coder.resize. See “Edit and Represent Coder Type Objects
and Properties” on page 4-14.

See Also
table | coder.Constant | coder.typeof

More About
. “Code Generation for Tables” on page 12-2
. “Table Limitations for Code Generation” on page 12-8
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Table Limitations for Code Generation

If you create tables, modify them, or use table functions in MATLAB code that you intend for code
generation, then code generation has limitations described in the next sections. Limitations that
apply to classes also apply to tables. For more information on class limitations, see “MATLAB Classes

Definition for Code Generation” on page 15-2.

Creating Tables Limitations

If your MATLAB code creates tables, then code generation has these limitations.

Inputs for Table Creation

Limitations

Any inputs

Table variable names do not have to be valid
MATLAB identifiers. The names must be
composed of ASCII characters, which can
include commas, dashes, and space
characters.

Table created from input arrays

You must specify variables names by using the
'VariableNames' name-value argument
when creating tables from input arrays by
using the table, array2table, or
cell2table functions.

Table created with preallocated variables

You do not have to specify the
'VariableNames' argument when you
preallocate a table by using the table
function and the 'Size' name-value
argument.

You can specify only the following data types

by using the 'VariableTypes' name-value

argument:

* 'double’

« 'single'

* 'doublenan' or 'doubleNaN'

* 'singlenan' or 'singleNaN'

« 'int8', 'intl6', 'int32"', or 'int64"’

e 'uint8', 'uintl6', 'uint32', or
'uint64'’

+ 'logical'

* ‘'duration'

o 'cellstr!'

* 'char'

Modifying Tables Limitations

If your MATLAB code modifies data in a table or its properties, then code generation has these

limitations.
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Table Operation or Property

Limitations

VariableNames, RowNames, DimensionNames,
or UserData properties

* You cannot change the VariableNames,
RowNames, DimensionNames, or UserData
properties of a table after you create it.

You can specify the 'VariableNames',
'RowNames ', and 'DimensionNames’' input
arguments when you create a table. These
input arguments specify the properties.

Table indices that specify variables as input
arguments to generated code

» To pass table indices that specify variables as
input arguments into generated code, first
make the indices constant by using the
coder.Constant function. If table indices
are not constant, then indexing into variables
produces an error.

Custom metadata

* You cannot add custom metadata to a table.
The addprop and rmprop functions are not
supported.

Assignments that change size of table

* You cannot change the size of a table by
assignments. For example, adding a new row
produces an error.

function T = foo() %#codegen
T = table((1:3)'
{'Varl','Var2'});
T(4,2) = 5;

end

Deleting a row or a variable also produces an
erTor.

,(1:3)', 'VariableNam

Vertical concatenation

* When you vertically concatenate tables, they
must have the same variable names in the
same order. In MATLAB, the variable names
must be the same but can be in different
orders in the tables.

Horizontal concatenation

* When you horizontally concatenate tables and
the tables have row names, they must have
the same row names in the same order. In
MATLAB, the row names must be the same
but can be in different orders in the tables.

Table variables that are N-D cell arrays

o If two tables have variables that are N-D cell
arrays, then the tables cannot be vertically
concatenated.

* You cannot use curly braces to extract data
from multiple table variables that are N-D cell
arrays because this operation is horizontal
concatenation.
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Using Table Functions Limitations

If your MATLAB code uses the functions listed in the table, then code generation has these
limitations.

Function Limitations

convertvars * Function handles are not supported.

* The second and third input arguments (vars
and dataType) must be constant.

* You cannot specify dataType as 'cell’,
‘cellstr', or 'char'.

innerjoin * In general, the input tables cannot have any
nonkey variables with the same names.
However, you can join subsets of the input
tables if you specify the 'LeftVariables'
and 'RightVariables' name-value
arguments. Specify these arguments so that
no variable name appears in both
'LeftVariables' and 'RightVariables'.

* The values of these name-value arguments
must be constant:
e 'Keys'
'LeftKeys'
* 'RightKeys'
* 'LeftVariables'
* 'RightVariables'
* Nested tables are not supported.

intersect * These functions support unsorted tables in all
_ cases. You do not have to specify the
setdiff 'stable’ option.

setxor

union

issortedrows * The input argument vars must be constant.

» If any table variables have multiple columns,
then those variables must have fixed widths.
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Function Limitations

join * In general, input tables cannot have nonkey
variables with the same names. However, you
can join subsets of the input tables if you
specify the name-value arguments:

* 'KeepOneCopy', where you list variables
to take from the left input table only.

* 'LeftVariables' and
'RightVariables', where you list
variables to take from either the left input
table or the right input table, but not both.

* The values of these name-value arguments
must be constant:
e 'Keys'
o 'LeftKeys'
* 'RightKeys'
* 'LeftVariables'
'RightVariables'
* 'KeepOneCopy'
* Nested tables are not supported.

movevars * The input argument vars cannot contain
duplicate variable names.
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Function

Limitations

outerjoin

Input tables cannot have key variables with
the same names unless the value of
'MergeKeys' is true (logical 1).

In general, the input tables cannot have any
nonkey variables with the same names.
However, you can join subsets of the input
tables if you specify the 'LeftVariables'
and 'RightVariables' name-value
arguments. Specify these arguments so that
no variable name appears in both
'LeftVariables' and 'RightVariables'.

The values of these name-value arguments
must be constant:

e 'Keys'

o 'LeftKeys'

* 'RightKeys'

* 'MergeKeys'

* 'LeftVariables'

*+ 'RightVariables'

e 'Type'

Nested tables are not supported.

rows2vars

The input table cannot be variable-size.

The 'VariableNamesSource' name-value
argument is not supported.

The value of the 'DataVariables' name-
value argument must be constant.

The value of the 'VariableNamingRule'
name-value argument must be constant.

If you assign row names to the input table,
then the vector of row names must be
constant.

sortrows

The input argument vars must be constant.

If tb1A has a variable that is a cell array of
character vectors with multiple columns, then
you cannot sort the table using the values in
that variable.

splitvars

The value of the 'NewVariableNames'
name-value argument must be constant.

The variables that are split cannot have a
variable number of columns.




Table Limitations for Code Generation

Function Limitations

stack * The second input argument, vars, must be
constant.

» The values of the 'ConstantVariables',

'NewDataVariableName', and
'IndexVariableName' name-value
arguments must be constant.

unstack  The 'NewDataVariableNames' name-value

argument must be specified. Its value must be
constant.

The vars and ivars input arguments (data
variables and indicator variables) must be
constant.

If you specify grouping variables and constant
variables, then they must be constant.

If you specify an aggregation function, then it
must be constant.

If a variable of the input table is a cell array of
character vectors, then unstack fills empty
cells in the corresponding output variable with
1-by-0 character arrays in the generated code.
In MATLAB, unstack fills such gaps with 0-
by-0 character arrays.

The unstack function does not support code
generation when the input table has a variable
that is a heterogeneous cell array that cannot
be converted to a homogeneous cell array.

» If the input has a variable that is a
homogeneous cell array, or that can be
converted to one, then the
'AggregationFunction' name-value
argument must be specified. The default
value of 'AggregationFunction’ is
‘unique’. But the unique function does
not support cell arrays.
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Function

Limitations

varfun

The function handle input, func, must be
constant.

While function handles can be inputs to
varfun itself, they cannot be inputs to your
entry point functions. Specify func within the
code meant for code generation. For more
information, see “Function Handle Limitations
for Code Generation” on page 17-2.

The values for all name-value arguments must
be constant.

The 'ErrorHandler' name-value argument
is not supported for code generation.

Variable-size input arguments are not
supported.

Grouping variables cannot have duplicate
values in generated code.

You cannot specify the value of
'"OutputFormat' as 'cell’ if you specify
the 'GroupingVariables' name-value
argument and the function returns a different
data type for each variable specified by
"InputVariables'.

If you specify groups and the number of
groups is not known at compile time, and that
number is zero, then empty double variables
in the output might have sizes of 1-by-0 in
generated code. In MATLAB, such variables
have sizes of 0-by-0.

See Also

array2table | cell2table | struct2table | table

More About

. “Code Generation for Tables” on page 12-2
. “Define Table Inputs” on page 12-5
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* “Code Generation for Timetables” on page 13-2
* “Define Timetable Inputs” on page 13-6
* “Timetable Limitations for Code Generation” on page 13-9
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In this section...

“Define Timetables for Code Generation” on page 13-2
“Allowed Operations on Timetables” on page 13-2
“MATLAB Toolbox Functions That Support Timetables” on page 13-3

The timetable data type is a data type suitable for tabular data with time-stamped rows. Like
tables, timetables consist of rows and column-oriented variables. Each variable in a timetable can
have a different data type and a different size with one restriction: each variable must have the same
number of rows.

The row times of a timetable are time values that label the rows. You can index into a timetable by
row time and variable. To index into a timetable, use smooth parentheses () to return a subtable or
curly braces {} to extract the contents. You can refer to variables and to the vector of row times by
their names. For more information, see “Timetables”.

When you use timetables with code generation, adhere to these restrictions.

Define Timetables for Code Generation

For code generation, use the timetable function. For example, suppose the input arguments to your
MATLAB function are three arrays that have the same number of rows (A, B, and C), a datetime or
duration vector containing row times (D), and a cell array that has variable names (vnames). You
can create a timetable that contains these arrays as timetable variables.

function TT = foo(A,B,C,D,vnames) %#codegen
TT = table(A,B,C, 'RowTimes',D, 'VariableNames',hvnames);
end

To convert arrays and tables to timetables, use the array2timetable and table2timetable
functions. For example, you can convert an input M-by-N matrix to a timetable, where each column of
the matrix becomes a variable in the timetable. Assign row times by using a duration vector.

function TT = foo(A,D,vnames) S#codegen

TT = array2timetable(A, 'RowTimes',D, 'VariableNames',vnames);
end

For code generation, you must supply timetable variable names when you create a timetable.
Timetable variable names do not have to be valid MATLAB identifiers. The names must be composed
of ASCII characters, but can include any ASCII characters (such as commas, dashes, and space
characters).

The row times can have either the datetime or duration data type.

Allowed Operations on Timetables

For code generation, you are restricted to the operations on timetables listed in this table.
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Operation

Example

Notes

Assignment operator: =

TT = timetable(A,B,C, 'RowTimes',D, ...
'VariableNames',vnames);
TT{:,1} = X;

Code generation does not
support using the assignment
operator = to:

* Delete a variable or a row.
* Add a variable or a row.

Indexing operation

D = seconds(1:10);

TT = timetable(A,B,C, 'RowTimes',D, ...
'VariableNames', vnames);
TT(seconds(3:7),1:3);

Code generation supports
indexing by position, variable or
row time, and logical indexing.
Also, you can index using
objects created by using the
timerange orwithtol
functions.

Code generation supports:
* Timetable indexing with

smooth parentheses, ().

* Content indexing with curly
braces, {}.

¢ Dot notation to access a
timetable variable.

Concatenation

TT1l = timetable(A,B,C, 'RowTimes',D1,...

'VariableNames',vnames);

TT2 = timetable(D,E,F, 'RowTimes',D2,...

'VariableNames',vnames);
TT = [TT1 ; TT2];

Code generation supports
timetable concatenation.

» For vertical concatenation,
timetables must have
variables that have the same
names in the same order.

» For horizontal concatenation,
timetables must have the
same number of rows. They
also must have the same row
times in the same order.

MATLAB Toolbox Functions That Support Timetables

For code generation, you can use timetables with these MATLAB toolbox functions:

* addvars

* array2timetable
* cat

* convertvars

* height

* horzcat

* innerjoin
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* intersect
o isempty

* ismember

* isregular
* issorted

* 1issortedrows
* join

* mergevars
* movevars

* ndims

* numel

* outerjoin
* removevars
* renamevars
* rows2vars

* retime
o setdiff
+ setxor
* size

* sortrows

+ splitvars

* stack

* synchronize

+ table2timetable
* timerange

+ timetable
 timetable2table
* union

* unique

* unstack

* varfun

* vertcat

* width

* withtol

See Also

More About
. “Define Timetable Inputs” on page 13-6
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“Timetable Limitations for Code Generation” on page 13-9
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Define Timetable Inputs

You can define timetable inputs at the command line or in the MATLAB Coder app. Programmatic
specification of timetable input types by using preconditioning (assert statements) is not supported.

Define Timetable Inputs at the Command Line

Use one of these procedures:

* “Provide an Example Timetable Input” on page 13-6
* “Provide a Timetable Type” on page 13-6
* “Provide a Constant Timetable Input” on page 13-6

Alternatively, if you have a test file that calls your entry-point function with example inputs, you can
determine the input types by using coder.getArgTypes.

Provide an Example Timetable Input
Use the -args option:

TT = timetable(A,B,C, 'RowTimes',D, 'VariableNames', vnames);
codegen myFunction -args {TT}

Provide a Timetable Type
To provide a type for a timetable to codegen:
1 Define a timetable. For example:

TT = timetable(A,B,C, 'RowTimes',D, 'VariableNames', vnames);

2 Create a type from T.

t = coder.typeof(TT);
3  Pass the type to codegen by using the -args option.

codegen myFunction -args {t}
Provide a Constant Timetable Input

To specify that a timetable input is constant, use coder.Constant with the -args option:

TT = timetable(A,B,C, 'RowTimes',D, 'VariableNames',6 vnames);
codegen myFunction -args {coder.Constant(TT)}

Define Timetable Inputs in the MATLAB Coder App

Use one of these procedures:

* “Automatically Define Input Types by Using the App” on page 24-4
* “Define Input Parameter by Example by Using the App” on page 24-6
» “Define or Edit Input Parameter Type by Using the App” on page 24-14
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Representation of Timetables

A coder type object for a timetable describes the object and its properties. Use coder. typeof or
pass timetable as a string scalar to coder.newtype.

The coder type object displays a succinct description of the object properties while excluding internal
state values. Nonconstant properties display their type and size, while constant properties display
only their values. For example:

t = timetable((1:5)"',(11:15)"', 'SampleRate',1);
tType = coder.typeof(t)

The representation of variable t is stored in coder type object tType.
tType =

matlab.coder.type.RegularTimetableType
5x2 timetable

Data :

1x2 homogeneous cell

Description : 1x0 char
UserData : Ox0 double
DimensionNames : {'Time'} {'Variables'}
VariableNames : {'Varl'} {'Var2'}
VariableDescriptions : 1x2 homogeneous cell
VariableUnits : 1x2 homogeneous cell
VariableContinuity : 1x2 matlab.internal.coder.tabular.Continuity
StartTime : 1x1 matlab.coder.type.DurationType
SampleRate : 1x1 double
TimeStep : 1x1 matlab.coder.type.DurationType

Define a regular timetable by specifying the SampleRate or TimeStep. You can also define an
irregular timetable by specifying the RowTimes. For example:

tl = timetable((1:3)', 'RowTimes',seconds(1:3));

t1Type = coder.typeof(t)

The representation of irregular table t1 is stored in coder type object t1Type.

tlType =

matlab.coder.type.TimetableType

3x1 timetable

Data : 1x1 homogeneous cell
Description : 1x0 char
UserData : 0x0 double
DimensionNames : {'Time'} {'Variables'}
VariableNames : {'Varl'}
VariableDescriptions : 1x1 homogeneous cell
VariableUnits : 1x1 homogeneous cell
VariableContinuity : 1x1 matlab.internal.coder.tabular.Continuity
RowTimes : 3x1 matlab.coder.type.DurationType

If your workflow requires the legacy representation of coder type objects, use the getCoderType
function on the variable that has the new representation of your class or object. See “Legacy
Representation of Coder Type Objects” on page 4-15.
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Resize Object Properties by Using coder.resize

You can resize most objects by using coder. resize. You can resize objects, its properties and create
arrays within the properties.

For a timetable coder object, you can resize the object properties:

t = timetable((1:5)"',(11:15)"', 'SampleRate',1);
tType = coder.typeof(t);
tType.UserData = coder.resize(tType.UserData,[10 1],[1 O])

This code resizes the UserData property to be a : 10x1 double property. The first dimension is
upper-bound at10.

tType =

matlab.coder.type.RegularTimetableType
5x2 timetable
Data : 1x2 homogeneous cell
Description : 1x0 char
UserData : :10x1 double
DimensionNames : {'Time'} {'Variables'}
VariableNames : {'Varl'} {'Var2'}
VariableDescriptions : 1x2 homogeneous cell
VariableUnits : 1x2 homogeneous cell
VariableContinuity : 1x2 matlab.internal.coder.tabular.Continuity
StartTime : 1x1 matlab.coder.type.DurationType
SampleRate : 1x1 double
TimeStep : 1x1 matlab.coder.type.DurationType

You can also resize the object by using coder.resize. See “Edit and Represent Coder Type Objects
and Properties” on page 4-14.

See Also
timetable | coder.Constant | coder.typeof

More About
. “Code Generation for Timetables” on page 13-2
. “Timetable Limitations for Code Generation” on page 13-9
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Timetable Limitations for Code Generation

If you create timetables, modify them, or use timetable functions in MATLAB code that you intend for
code generation, then code generation has limitations described in the next sections. Limitations that
apply to classes also apply to timetables. For more information on class limitations, see “MATLAB
Classes Definition for Code Generation” on page 15-2.

Creating Timetables Limitations

If your MATLAB code creates timetables, then code generation has these limitations.

Inputs for Timetable Creation Limitations

Any inputs * The name of the first dimension of a timetable
is 'Time' unless you specify it by using the
'DimensionNames' name-value argument.

The name of the first dimension is also the
name of the vector of row times, which you
can refer to by using dot notation.

» To create a regular timetable when the
'SampleRate’', 'StartTime', or
'TimeStep' name-value arguments are
passed in by an entry point function, first use
the coder.Constant function to make the
values constant. If you do not make them
constant, then the row times are considered to
be irregular.

* Ifyou create a regular timetable, and you
attempt to set irregular row times, then an
error is produced.

* Ifyou create an irregular timetable, then it
remains irregular even if you set its sample
rate or time step.

» Timetable variable names do not have to be
valid MATLAB identifiers. The names must be
composed of ASCII characters, which can
include commas, dashes, and space
characters.

Timetable created from input arrays * You must specify variables names by using the
'VariableNames' name-value argument
when creating timetables from input arrays by
using the timetable or array2timetable
functions.
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Inputs for Timetable Creation Limitations

Timetable created with preallocated variables * You do not have to specify the
'VariableNames' argument when you
preallocate a timetable by using the
timetable function and the 'Size' name-
value argument.

* You can specify only the following data types
by using the 'VariableTypes' name-value

argument:
* 'double’
* ‘'single'

¢ ‘'doublenan' or 'doubleNaN'

* 'singlenan' or 'singleNaN'

e 'int8', 'intl6', 'int32', or 'int64"

e 'uint8', 'uintl6', 'uint32', or
'uint64’

+ 'logical'

e 'datetime'

e ‘'duration'

o ‘'cellstr!'

e 'char'

Modifying Timetables Limitations

If your MATLAB code modifies data in a timetable, its row times, or its properties, then code
generation has these limitations.

Timetable Operation or Property Limitations
VariableNames, DimensionNames, or » After you create a timetable, you cannot
UserData properties change the VariableNames,

DimensionNames, or UserData properties.

When you create a timetable, you can specify
the 'VariableNames', 'DimensionNames’,
and 'RowTimes' input arguments to set the

properties having those names.
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Timetable Operation or Property

Limitations

Timetable indices as input arguments to
generated code

To pass timetable indices that specify
variables into generated code as input
arguments, first use the coder.Constant
function to make the indices into the second
dimension of the timetable constant. If indices
into the second dimension are not constant,
then indexing into variables produces an
erTor.

If a timetable has row times that are
duration values, and you index into it by
using either duration values or an object
produced by the timerange or withtol
functions, then the output is nonconstant with
a variable number of rows.

If a regular timetable has row times that are
duration values, and you index into it by
using either duration values or an object
produced by the timerange or withtol
functions, then the output is considered to be
irregular.

Custom metadata

You cannot add custom metadata to a
timetable. The addprop and rmprop
functions are not supported.

Assignments that change size of timetable

You cannot change the size of a timetable by
assignments. For example, this call to add a
new row produces an error.

function TT = foo() %#codegen
TT = timetable((1:3)',(1:3)"',...
'RowTimes',seconds([0,5,10]), ...
'VariableNames',{'Varl', 'Var2'});
T7{4,:} = [5,5];

end

Deleting a row or a variable by assignment
also produces an error.

You cannot add a new row by using a new row
time in an assignment. For example, this call
to add a new row by using a new row time
instead of a numeric index does not produce
an error, but also does not add the new row.

function TT = foo() %#codegen
TT = timetable((1:3)',(1:3)"',...
'RowTimes',seconds([0,5,10]),...
'VariableNames',{'Varl', 'Var2'});
TT{seconds(15),:} = [5,5];

end
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Timetable Operation or Property

Limitations

Vertical concatenation

When you vertically concatenate timetables,
they must have the same variable names in
the same order. In MATLAB, the variable
names must be the same but can be in
different orders in the timetables.

Horizontal concatenation

When you horizontally concatenate timetables,
they must have the same row times in the
same order. In MATLAB, the row times must
be the same but can be in different orders in
the timetables.

Timetable variables that are N-D cell arrays

If two timetables have variables that are N-D
cell arrays, then you cannot vertically
concatenate the timetables.

You cannot use curly braces to extract data
from multiple timetable variables that are N-D
cell arrays because this operation is horizontal
concatenation.

Using Timetable Functions Limitations

If your MATLAB code uses the functions listed in the table, then code generation has these

limitations.
Function Limitations
convertvars * Function handles are not supported.

The second and third input arguments (vars
and dataType) must be constant.

You cannot specify dataType as 'cell’,
'cellstr', or 'char'.
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Function

Limitations

innerjoin

In general, the input timetables cannot have
any nonkey variables with the same names.
However, you can join subsets of the input
timetables if you specify the
'LeftVariables' and 'RightVariables'
name-value arguments. Specify these
arguments so that no variable name appears
in both 'LeftVariables' and
'RightVariables'.

The values of these name-value arguments
must be constant:

* 'Keys'

o 'LeftKeys'

'RightKeys'

* 'LeftVariables'

* 'RightVariables'

Nested timetables are not supported.

intersect
setdiff
setxor

union

These functions support unsorted timetables
in all cases. You do not have to specify the
'stable' option.

isregular

Use coder.Constant to make the input
argument timeComponent constant.

The input argument timeComponent cannot
be a calendar unit. If you specify it, then its
value must be 'time’.

issortedrows

The input argument vars must be constant.

If any timetable variables have multiple
columns, then those variables must have fixed
widths.
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Function Limitations

join * In general, input timetables cannot have
nonkey variables with the same names.
However, you can join subsets of the input
timetables if you specify the name-value
arguments:

* 'KeepOneCopy', where you list variables
to take from the left input timetable only.

* 'LeftVariables' and
'RightVariables', where you list
variables to take from either the left input
timetable or the right input timetable, but
not both.

* The values of these name-value arguments
must be constant:
e 'Keys'
o 'LeftKeys'
* 'RightKeys'
* 'LeftVariables'
* 'RightVariables'
* 'KeepOneCopy'
* Nested timetables are not supported.

movevars * The input argument vars cannot contain
duplicate variable names.
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Function Limitations

outerjoin * Input timetables cannot have key variables
with the same names unless the value of
'MergeKeys' is true (logical 1).

* In general, the input timetables cannot have
any nonkey variables with the same names.
However, you can join subsets of the input
timetables if you specify the
'LeftVariables' and 'RightVariables'
name-value arguments. Specify these
arguments so that no variable name appears
in both 'LeftVariables' and
'RightVariables'.

* The values of these name-value arguments
must be constant:

e 'Keys'
* 'LeftKeys'
* 'RightKeys'
* 'MergeKeys'
* 'LeftVariables'
*+ 'RightVariables'
* 'Type'
* Nested timetables are not supported.
retime * The row times of the output timetable are
_ considered to be irregular, even when
synchronize synchronized to row times that have a regular
time step.

* The 'makima’ interpolation method is not
supported.

o Ifthe VariableContinuity properties of
the input timetables are not constant, then
this function ignores them.

* The 'weekly', 'monthly’, and
'quarterly' time steps are not supported.
o If the input timetables have row times that

are datetime values, then the 'daily"
and 'yearly' time steps also are not
supported.

sortrows * The input argument vars must be constant.

If tb1A has a variable that is a cell array of
character vectors with multiple columns, then
you cannot sort the timetable using the values
in that variable.
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Function

Limitations

splitvars

The value of the 'NewVariableNames'
name-value argument must be constant.

The variables that are split cannot have a
variable number of columns.

stack

The second input argument, vars, must be
constant.

The values of the 'ConstantVariables',
"NewDataVariableName', and
'IndexVariableName' name-value
arguments must be constant.

timerange

The input argument unitOfTime is not
supported.
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Function

Limitations

unstack

The 'NewDataVariableNames' name-value
argument must be specified. Its value must be
constant.

The vars and ivars input arguments (data
variables and indicator variables) must be
constant.

If you specify grouping variables and constant
variables, then they must be constant.

If you specify an aggregation function, then it
must be constant.

If the input is a timetable with regular row
times and you specify grouping variables that
do not include the row times, then the output
timetable might have irregular row times.
Even though the intervals between output row
times might look the same, the output
timetable considers the vector of row times to
be irregular.

If a variable of the input timetable is a cell
array of character vectors, then unstack fills
empty cells in the corresponding output
variable with 1-by-0 character arrays in the
generated code. In MATLAB, unstack fills
such gaps with 0-by-0 character arrays.

The unstack function does not support code
generation when the input timetable has a
variable that is a heterogeneous cell array
that cannot be converted to a homogeneous
cell array.

» Ifthe input has a variable that is a
homogeneous cell array, or that can be
converted to one, then the
'AggregationFunction' name-value
argument must be specified. The default
value of 'AggregationFunction’ is
‘unique’. But the unique function does
not support cell arrays.
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Function

Limitations

varfun .

The function handle input, func, must be
constant.

While function handles can be inputs to
varfun itself, they cannot be inputs to your
entry point functions. Specify func within the
code meant for code generation. For more
information, see “Function Handle Limitations
for Code Generation” on page 17-2.

The values for all name-value arguments must
be constant.

The 'ErrorHandler' name-value argument
is not supported for code generation.

Variable-size input arguments are not
supported.

If you specify 'GroupingVariables', then
the output is always an irregular timetable.

Grouping variables cannot have duplicate
values in generated code.

You cannot specify the value of
'"OutputFormat' as 'cell’ if you specify
the 'GroupingVariables' name-value
arguments and the function returns a different
data type for each variable specified by
'InputVariables'.

If you specify groups and the number of
groups is not known at compile-time, and that
number turns out to be zero, then empty
double variables in the output might have
sizes of 1-by-0 in generated code. In MATLAB,
such variables have sizes of 0-by-0.

See Also
array2timetable | table2timetable | timetable

More About

“Code Generation for Timetables” on page 13-2
“Define Timetable Inputs” on page 13-6
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* “Code Generation for Enumerations” on page 14-2
* “Customize Enumerated Types in Generated Code” on page 14-7
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Code Generation for Enumerations

14-2

Enumerations represent a fixed set of named values. Enumerations help make your MATLAB code
and generated C/C++ code more readable. For example, the generated code can test equality with
code such as if (x == Red) instead of using strcmp.

For code generation, when you use enumerations, adhere to these restrictions:

* Calls to methods of enumeration classes are not supported.
* Passing strings or character vectors to constructors of enumerations is not supported.

* The enumeration class must derive from one of these base types: int8, uint8, int16, uint1l6,
or int32. See “Define Enumerations for Code Generation” on page 14-2.

* You can use only a limited set of operations on enumerations. See “Allowed Operations on
Enumerations” on page 14-4.

* Use enumerations with functions that support enumerated types for code generation. See
“MATLAB Toolbox Functions That Support Enumerations” on page 14-5.

Define Enumerations for Code Generation

For code generation, the enumeration class must derive from one of these base types: int8, uints,
intl6, uintl16, or int32. For example:

classdef PrimaryColors < int32
enumeration
Red (1),
Blue(2),
Yellow(4)
end
end

You can use the base type to control the size of an enumerated type in generated C/C++ code. You
can:

* Represent an enumerated type as a fixed-size integer that is portable to different targets.
* Reduce memory usage.

* Interface with legacy code.

* Match company standards.

Representation of Enumerated Type in Generated Code

The representation of the enumerated type in generated C/C++ code depends on the following:

* The base type of the MATLAB enumeration
* The target language (C or C++)
» If the target language is C++, the target language standard (C++03 or C++11)

Base Type is Native Integer Type

If the base type is the native integer type for the target platform (for example, int32), the code
generator produces a C/C++ enumerated type. Consider this MATLAB enumerated type definition:
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classdef LEDcolor < int32
enumeration
GREEN(1),
RED(2)
end
end

If you generate C code or C++03 code, the generated enumeration is:

enum LEDcolor

{
GREEN = 1,
RED

};

If you generate C++11 code, the generated code contains an enumeration class (by default) that
explicitly defines the underlying type:

enum class LEDcolor : int

{
GREEN = 1,
RED

b
Base Type is Different from the Native Integer Type

Suppose that built-in integer base type for the enumeration is different from the native integer type
for the target platform. For example, consider this MATLAB enumerated type definition:

classdef LEDcolor < intlé6
enumeration
GREEN(1),
RED(2)
end
end

» Ifyou generate C code, the code generator produces a typedef statement for the enumerated
type and #define statements for the enumerated values. For example, the enumerated type
definition LEDcolor produces this C code:

typedef short LEDcolor;
#define GREEN ((LEDcolor)1l)
#define RED ((LEDcolor)2)

* Ifyou generate C++03 code, the enumeration members are converted to constants. These
constants belong to the namespace that contains the enumeration type definition in the generated
C++ code.

For example, suppose that you place the enumerated type definition LEDcolor inside the package
pkg. The default behavior of the code generator is to convert MATLAB packages to C++
namespaces. The generated C++ code is placed inside the namespace pkg:

namespace pkg {
typedef short LEDcolor;

// enum pkg LEDcolor

const LEDcolor GREEN{1};
const LEDcolor RED{2};
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}

* C++11 allows you to specify the underlying type of an enumeration, just like MATLAB does. If you
generate C++11 code, the MATLAB enumeration class is converted to a C++ enumeration class
(by default) that explicitly defines the underlying type.

For example, suppose that you place the enumerated type definition LEDcolor inside the package
pkg. The default behavior of the code generator is to convert MATLAB packages to C++
namespaces. The generated C++11 code is placed inside the namespace pkg:

namespace pkg {
enum class LEDcolor : short

{
GREEN = 1, // Default value
RED

b
}

The C/C++ type in the typedef statement or the underlying type of the C++11 enumeration
depends on:

* The integer sizes defined for the production hardware in the hardware implementation object or
the project settings. See coder.HardwareImplementation.

* The setting that determines the use of built-in C types or MathWorks typedefs in the generated
code. See “Specify Data Types Used in Generated Code” on page 27-25 and “Mapping MATLAB
Types to Types in Generated Code” on page 34-15.

Generate C++11 Code That Contains Ordinary C Enumerations

You can change the default behavior of the code generator to produce ordinary C enumerations in the

generated C++11 code. Do one of the following:

* In the code generation configuration object, set the CppGenerateEnumClass property to false.

* Inthe MATLAB Coder app, in the Generate step, on the Code Appearance tab, clear the
Generate C++ enum class from MATLAB enumeration check box.

To instruct the code generator to produce ordinary C enumeration for a particular MATLAB
enumeration class in your code, include the static method generateEnumClass that returns false
in the implementation of that MATLAB enumeration class. See “Customize Enumerated Types in
Generated Code” on page 14-7.

Allowed Operations on Enumerations

For code generation, you are restricted to the operations on enumerations listed in this table.

Operation Example Notes

assignment operator: = —
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Operation

Example

Notes

relational operators: < > <=

>= == ~=

xon == xoff

Code generation does not
support using == or ~= to test
equality between an
enumeration member and a
string array, a character array,
or a cell array of character
arrays.

cast operation

double(LEDcolor.RED)

conversion to character array or
string

y = char(LEDcolor.RED);
yl
y2

string(LEDcolor.RED);

cast(LEDcolor.RED, 'char');

*  You can convert only
compile-time scalar valued
enumerations. For example,
this code runs in MATLAB,
but produces an error in
code generation:

y2 = string(repmat(LEDcolor.RED,1,2]));

* The code generator
preserves enumeration
names when the conversion
inputs are constants. For
example, consider this
enumerated type definition:

classdef AnEnum < int32
enumeration
zero(0),
two(2),
otherTwo(2)
end
end

Generated code produces
"two" for
y = string(AnEnum.two)

and "otherTwo" for

y = string(AnEnum.two)

indexing operation

m
n

p

[1 2]
LEDcolor(m)
n(LEDcolor.GREEN)

control flow statements: if,
switch, while

if state == sysMode.ON
led = LEDcolor.GREEN;
else
led = LEDcolor.RED;
end

MATLAB Toolbox Functions That Support Enumerations

For code generation, you can use enumerations with these MATLAB toolbox functions:

* cast
e cat
* char

e circshift
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* enumeration

« fliplr
+ flipud
* histc

* intersect
* ipermute
+ isequal

* 1isequaln
» isfinite
o isinf

* 1ismember
* 1isnan

+ issorted

* length

* permute
* repmat

* reshape
* rot9o

¢ setdiff
* setxor
 shiftdim
* sort

* sortrows

* squeeze
* string

e union

* unique
See Also
More About

. “Generate Code for an LED Control Function That Uses Enumerated Types” on page 27-134
. “Customize Enumerated Types in Generated Code” on page 14-7
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Customize Enumerated Types in Generated Code

For code generation, to customize an enumeration, in the static methods section of the class
definition, include customized versions of the methods listed in this table.

Method

Description

Default Value
Returned or Specified

When to Use

getDefaultValue

Returns the default
enumerated value.

First value in the
enumeration class
definition.

For a default value that
is different than the first
enumeration value,
provide a
getDefaultValue
method that returns the
default value that you
want. See “Specify a
Default Enumeration
Value” on page 14-8.

getHeaderFile

Specifies the file that
defines an externally
defined enumerated

type.

To use an externally
defined enumerated
type, provide a
getHeaderFile
method that returns the
path to the header file
that defines the type. In
this case, the code
generator does not
produce the class
definition. See “Specify
a Header File” on page
14-8

addClassNameToEnumNames

Specifies whether the
class name becomes a
prefix in the generated
code.

false — prefix is not
used.

If you want the class
name to become a prefix
in the generated code,
set the return value of
the
addClassNameToEnum
Names method to true.
See “Include Class
Name Prefix in
Generated Enumerated
Type Value Names” on
page 14-9.

Note When generating
C++11 enumeration
classes, the code
generator ignores this
static method.
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Method Description Default Value When to Use
Returned or Specified
generateEnumClass Specifies whether to true — enumeration When generating C+
generate C++11 classes are generated in |+11 code, to instruct
enumeration classes C++11 code the code generator to

produce ordinary C
enumeration for a
particular MATLAB
enumeration, set the
return value of
generateEnumClass
method to false. See
“Generate C++11 Code
Containing Ordinary C
Enumeration” on page
14-10.

14-8

Specify a Default Enumeration Value

If the value of a variable that is cast to an enumerated type does not match one of the
enumerated type values:

* Generated MEX reports an error.
* Generated C/C++ code replaces the value of the variable with the enumerated type default value.

Unless you specify otherwise, the default value for an enumerated type is the first value in the
enumeration class definition. To specify a different default value, add your own getDefaultValue
method to the methods section. In this example, the first enumeration member value is
LEDcolor.GREEN, but the getDefaultValue method returns LEDcolor.RED:

classdef LEDcolor < int32
enumeration
GREEN(1),
RED(2)
end

methods (Static)
function y = getDefaultValue()
y = LEDcolor.RED;
end
end
end

Specify a Header File

To specify that an enumerated type is defined in an external file, provide a customized
getHeaderFile method. This example specifies that LEDcolor is defined in the external file
my LEDcolor.h.

classdef LEDcolor < int32
enumeration
GREEN(1),
RED(2)
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end

methods (Static)
function y=getHeaderFile()
y='my LEDcolor.h';
end
end
end

You must provide my LEDcolor.h. For example:

enum LEDcolor
{
GREEN = 1,
RED
+
typedef enum LEDcolor LEDcolor;

If you place the MATLAB enumeration LEDcolor inside the package pkg and generate C++ code,
code generation preserves the name of this enumeration and places it inside the namespace pkg in
the generated code. Therefore, in the header file that you provide, you must define this enumeration
inside the namespace pkg.

Include Class Name Prefix in Generated Enumerated Type Value
Names

By default, the generated enumerated type value name does not include the class name prefix. For
example:

enum LEDcolor

{
GREEN = 1,
RED

b
typedef enum LEDcolor LEDcolor;

To include the class name prefix, provide an addClassNameToEnumNames method that returns true.
For example:

classdef LEDcolor < int32
enumeration
GREEN(1),
RED(2)
end

methods (Static)
function y = addClassNameToEnumNames ()
y=true;
end
end
end

In the generated type definition, the enumerated value names include the class prefix LEDcolor.

enum LEDcolor

{
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LEDcolor GREEN = 1,
LEDcolor RED
b

typedef enum LEDcolor LEDcolor;

Generate C++11 Code Containing Ordinary C Enumeration

When you generate C++11 code, your MATLAB enumeration class is converted to a C++11
enumeration class. For example:

enum class MyEnumClassl6 : short

{
Orange = 0, // Default value
Yellow,
Pink

}

To generate an ordinary C enumeration instead, provide a generateEnumClass method that returns
false. For example:

classdef MyEnumClassl6 < intl6
enumeration
Orange(0),
Yellow(1l),
Pink(2)
end

% particular enum opting out
methods (Static)
function y = generateEnumClass()
y = false;
end
end
end

Now the generated C++11 code contains an ordinary C enumeration.

enum MyEnumClassl6 : short

{
Orange = 0, // Default value
Yellow,
Pink

};

See Also

More About

. Modifying Superclass Methods and Properties
. “Code Generation for Enumerations” on page 14-2
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* “MATLAB Classes Definition for Code Generation” on page 15-2

* “Classes That Support Code Generation” on page 15-7

* “Generate Code for MATLAB Value Classes” on page 15-8

* “Generate Code for MATLAB Handle Classes and System Objects” on page 15-12
* “Code Generation for Handle Class Destructors” on page 15-15

* “Class Does Not Have Property” on page 15-18

* “Passing By Reference Not Supported for Some Properties” on page 15-20
* “Handle Object Limitations for Code Generation” on page 15-21

* “System Objects in MATLAB Code Generation” on page 15-25

* “Specify Objects as Inputs at the Command Line” on page 15-28

» “Specify Objects as Inputs in the MATLAB Coder App” on page 15-31

* “Work Around Language Limitation: Code Generation Does Not Support Object Arrays”
on page 15-34
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MATLAB Classes Definition for Code Generation

To generate efficient standalone code for MATLAB classes, you must use classes differently than
when running your code in the MATLAB environment.

15-2

What’s Different

More Information

Restricted set of language features.

“Language Limitations” on page 15-2

Restricted set of code generation features.

“Code Generation Features Not Compatible with
Classes” on page 15-3

Definition of class properties.

“Defining Class Properties for Code Generation”
on page 15-4

Use of handle classes.

“Generate Code for MATLAB Handle Classes and
System Objects” on page 15-12

“Code Generation for Handle Class Destructors”
on page 15-15

“Handle Object Limitations for Code Generation”
on page 15-21

Global variables containing MATLAB handle
objects are not supported for code generation.

N/A

Inheritance from built-in MATLAB classes is not
supported.

“Inheritance from Built-In MATLAB Classes Not
Supported” on page 15-6

Language Limitations

Although code generation support is provided for common features of classes such as properties and
methods, there are a number of advanced features which are not supported, such as:

* Events

* Listeners

* Arrays of objects

* Recursive data structures

o Linked lists
* Trees
* Graphs
* Nested functions in constructors

* Overloadable operators subsref, subsassign, and subsindex

In MATLAB, classes can define their own versions of the subsref, subsassign, and subsindex
methods. Code generation does not support classes that have their own definitions of these

methods.
* The empty method

In MATLAB, classes have a built-in static method, empty, which creates an empty array of the
class. Code generation does not support this method.
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The following MATLAB handle class methods:

¢ addlistener

[] eq
+ findobj
 findprop

The AbortSet property attribute

Code Generation Features Not Compatible with Classes

You can generate code for entry-point MATLAB functions that use classes, but you cannot
generate code directly for a MATLAB class.

For example, if ClassNameA is a class definition, you cannot generate code by executing:

codegen ClassNameA
A handle class object cannot be an entry-point function input or output.

A value class object can be an entry-point function input or output. However, if a value class object
contains a handle class object, then the value class object cannot be an entry-point function input
or output. A handle class object cannot be an entry-point function input or output.

Code generation does not support global variables that are handle classes.
Code generation does not support multiple outputs from constructors.

Code generation does not support assigning an object of a value class into a nontunable property.
For example, obj.prop=v; is invalid when prop is a nontunable property and v is an object
based on a value class.

You cannot use coder.extrinsic to declare a class or method as extrinsic.

You cannot pass a MATLAB class to coder. ceval. You can pass class properties to
coder.ceval.

If a property has a get method, a set method, or validators, or is a System object property with
certain attributes, then you cannot pass the property by reference to an external function. See
“Passing By Reference Not Supported for Some Properties” on page 15-20.

If an object has duplicate property names and the code generator tries to constant-fold the object,
code generation can fail. The code generator constant-folds an object when it is used with
coder.Constant or coder.const, or when it is an input to or output from a constant-folded
extrinsic function.

Duplicate property names occur in an object of a subclass in these situations:

* The subclass has a property with the same name as a property of the superclass.

* The subclass derives from multiple superclasses that use the same name for a property.
Duplicate property names must be consistently constant or non-constant across multiple
inheritance related classes. For example, code generation produces an error if an object with a

constant property aProp inherits aProp from a superclass where aProp is defined as non-
constant.

For information about when MATLAB allows duplicate property names, see “Subclassing Multiple
Classes”.
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Defining Class Properties for Code Generation

For code generation, you must define class properties differently than you do when running your code
in the MATLAB environment:

MEX functions report errors that result from property validation. Standalone C/C++ code reports
these errors only if you enable run-time error reporting. See “Generate Standalone C/C++ Code
That Detects and Reports Run-Time Errors” on page 29-20. Before you generate standalone C/C+
+ code, it is a best practice to test property validation by running a MEX function over the full
range of input values.

After defining a property, do not assign it an incompatible type. Do not use a property before
attempting to grow it.

When you define class properties for code generation, consider the same factors that you take into
account when defining variables. In the MATLAB language, variables can change their class, size,
or complexity dynamically at run time so you can use the same variable to hold a value of varying
class, size, or complexity. C and C++ use static typing. Before using variables, to determine their
type, the code generator requires a complete assignment to each variable. Similarly, before using

properties, you must explicitly define their class, size, and complexity.

o [Initial values:

15-4

If the property does not have an explicit initial value, the code generator assumes that it is
undefined at the beginning of the constructor. The code generator does not assign an empty
matrix as the default.

If the property does not have an initial value and the code generator cannot determine that the
property is assigned prior to first use, the software generates a compilation error.

For System objects, if a nontunable property is a structure, you must completely assign the
structure. You cannot do partial assignment using subscripting.

For example, for a nontunable property, you can use the following assignment:
mySystemObject.nonTunableProperty=struct('fieldA','a"', 'fieldB','b"');
You cannot use the following partial assignments:

mySystemObject.nonTunableProperty.fieldA
mySystemObject.nonTunableProperty.fieldB

1 a 1 ;
1 b 1 ;
coder.varsize is not supported for class properties.

If the initial value of a property is an object, then the property must be constant. To make a
property constant, declare the Constant attribute in the property block. For example:

classdef MyClass
properties (Constant)
pl = MyClass2;
end
end

Code generation does not support a constant property that is assigned to an object that
contains a System object.

MATLAB computes class initial values at class loading time before code generation. If you use
persistent variables in MATLAB class property initialization, the value of the persistent variable
computed when the class loads belongs to MATLAB; it is not the value used at code generation
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time. If you use coder.target in MATLAB class property initialization,
coder.target('MATLAB') returns true (1).

* Variable-size properties:

Code generation supports upper-bounded and unbounded variable-size properties for both
value and handle classes.

To generate unbounded variable-size class properties, enable dynamic memory allocation.

To make a variable-size class property, make two sequential assignments of a class property,
one to a scalar and the next to an array.

classdef varSizePropl < handle
properties
prop
varProp
end
end

function extFunc(n)
obj = varSizePropl;
% Assign a scalar value to the property.
obj.prop = 1;
obj.varProp = 1;
% Assign an array to the same property to make it variable-sized.
obj.prop = 1:98;
obj.varProp = 1:n;
end

In the preceding code, the first assignment to prop and varProp is scalar, and their second
assignment is to an array with the same base type. The size of prop has an upper bound of 98,
making it an upper-bounded, variable-size property.

If n is unknown at compile time, obj.varProp is an unbounded variable-size property. If it is
known, it is an upper-bounded, variable-size class property.

If the class property is initialized with a variable-size array, the property is variable-size.

classdef varSizeProp2
properties
prop
end
methods
function obj = varSizeProp2(inVar)
% Assign incoming value to local variable
locVar = inVar;

% Declare the local variable to be a variable-sized column
% vector with no size limit
coder.varsize('locVar', [inf 1],[1 0]);

% Assign value
obj.prop = locVar;
end
end
end

In the preceding code, inVar is passed to the class constructor and stored in LocVar. locVar
is modified to be variable-size by coder.varsize and assigned to the class property
obj .prop, which makes the property variable-size.

» If the input to the function call varSizeProp2 is variable-size, coder.varsize is not
required.

function z = constructCall(n)

z = varSizeProp2(1l:n);
end
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» If the value of n is unknown at compile-time and has no specified bounds, z.prop is an
unbounded variable-size class property.

» If the value of n is unknown at compile-time and has specified bounds, z.prop is an upper-
bounded variable-size class property.

» If a property is constant and its value is an object, you cannot change the value of a property of
that object. For example, suppose that:

* 0bj is an object of myClass1.
* myClassl has a constant property p1l that is an object of myClass2.
* myClass2 has a property p2.

Code generation does not support the following code:

obj.pl.p2 = 1;

Inheritance from Built-In MATLAB Classes Not Supported

You cannot generate code for classes that inherit from built-in MATLAB classes. For example, you
cannot generate code for the following class:

classdef myclass < double

An exception to this rule is the MATLAB enumeration class. You can generate code for enumeration
classes that inherit from built-in MATLAB classes. See “Code Generation for Enumerations” on page
14-2.
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Classes That Support Code Generation

You can generate code for MATLAB value and handle classes and user-defined System objects. Your
class can have multiple methods and properties and can inherit from multiple classes.

To generate code for:

Example:

Value classes

“Generate Code for MATLAB Value Classes” on
page 15-8

Handle classes including user-defined System
objects

“Generate Code for MATLAB Handle Classes and
System Objects” on page 15-12

For more information, see:

* “Role of Classes in MATLAB”

* “MATLAB Classes Definition for Code Generation” on page 15-2
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Generate Code for MATLAB Value Classes

This example shows how to generate code for a MATLAB value class and then view the generated
code in the code generation report.

1 In a writable folder, create a MATLAB value class, Shape. Save the code as Shape.m.

classdef Shape
% SHAPE Create a shape at coordinates
% centerX and centerY
properties
centerX;
centeryY;
end
properties (Dependent = true)
area;
end
methods
function out = get.area(obj)
out = obj.getarea();
end
function obj = Shape(centerX,centerY)
obj.centerX = centerX;
obj.centerY = centerY;

end
end
methods (Abstract = true)
getarea(obj);
end
methods(Static)
function d = distanceBetweenShapes(shapel, shape2)
xDist = abs(shapel.centerX - shape2.centerX);
yDist = abs(shapel.centerY - shape2.centerY);
d = sqrt(xDist”2 + yDist"2);
end
end
end

2 In the same folder, create a class, Square, that is a subclass of Shape. Save the code as
Square.m.

classdef Square < Shape
% Create a Square at coordinates center X and center Y
% with sides of length of side
properties
side;
end
methods
function obj = Square(side,centerX,centerY)
obj@Shape(centerX, centerY);
obj.side = side;
end
function Area = getarea(obj)
Area = obj.side”2;
end
end
end
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3

In the same folder, create a class, Rhombus, that is a subclass of Shape. Save the code as
Rhombus .m.

classdef Rhombus < Shape
properties
diagl;
diag2;
end
methods
function obj = Rhombus(diagl,diag2,centerX,centerY)
obj@Shape(centerX, centerY);
obj.diagl = diagl;
obj.diag2 = diag2;

end
function Area = getarea(obj)
Area = 0.5*obj.diagl*obj.diag2;
end
end
end

Write a function that uses this class.

function [TotalArea, Distance] = use_shape
s#codegen

s = Square(2,1,2);

r = Rhombus(3,4,7,10);

TotalArea = s.area + r.area;
Distance = Shape.distanceBetweenShapes(s,r);

Generate a static library for use_shape and generate a code generation report.

codegen -config:lib -report use shape

codegen generates a C static library with the default name, use shape, and supporting files in
the default folder, codegen/1ib/use shape.

Click the View report link.

To see the Rhombus class definition, on the MATLAB Source pane, under Rhombus . m, click
Rhombus. The Rhombus class constructor is highlighted.

Click the Variables tab. You see that the variable obj is an object of the Rhombus class. To see
its properties, expand obj.
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4\ MATLAB Coder Report Viewer - ZA2 \acalambu 8doc22, 18077 - o X
REPORT
@ ven- B 4 @ &
Back Q Find Trace | Editln | Package Export Report
Code = MATLAB | Code v  Information
NAVIGATE TRace | epim SHARE
MATLAB Source Constructor. RnombusiRhombus
Funclion List Call Tree 1 classdef Rhombus < Shape [
2 td
= £ use_shape.m 5 P"c"’;;a;f
fx use_shape 2 dieg2;
= ) Rhombus.m 5 end
fx Rhombus 6 methods o
fi getarea 7 function obj - Rhombus(diagl,diag2, centerX,centery) _
5 @ Shapem 8 obj@shape(centerx, centerY); _
g Sh‘ . 9 obj.diagl - diagl; _
G LIS 10 obj.diag2 - diag2; _
[ &3 Shape > 2 1 end
S distanceBetweenShapes 12 function Area - getarea(ob3)
= ) Squarem 13 Area = 0.5%0bj.diagl*obj.diag2;
fx Square 14 end
fx gelarea e e
16 end
Generated Code
B £ Source Files
[ rtwiypes.h
[) use_shape.c
[} use_shape.h
[) use_shape_data.c
[ use_shape_datah
[} use_shape_initialize.c
) use_shape_iniilize h Summary All Messages (0) Build Logs Code Insights (0) Variables
[} use_shape_terminate.c Name Type Size Class
[} use_shape_terminate h 4 obj Output 1x1 Rhombus [
- EJ “Se‘—s':p"’—“"’“" centerX. 121 double
= B Example Files
0 mrm . centerY 1x1 double
0) mainh diag1 1<1 double
diag2 1x1 double
centerX Input 1x1 double
centerY Input 1x1 double
diag Input 1<1 double
diag2 Input 1x1 double
14 z

9 In the MATLAB Source pane, click Call Tree.

The Call Tree view shows that use shape calls the Rhombus constructor and that the Rhombus
constructor calls the Shape constructor.

MATLABE SOURCE

Function List

F fx use_shape
+ fx Square/Square

Call Tres

=} fx Rhombus/Rhombus

L. fx Shape/Shape

++ fx Shape/getarea
;rli fx Shapelget.area

fx Shape/distanceBetweenShapes

10 In the code pane, in the Rhombus class constructor, move your pointer to this line:

obj@Shape(centerX, centerY)

The Rhombus class constructor calls the Shape method of the base Shape class. To view the

Shape class definition, in obj@Shape, double-click Shape.
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O
Shape.m

1 classdef Shape
2 % SHAPE Create a shape at coordinates
3 % centerX and center¥Y

4 propertiss

G centerX;

[ centery;

7 end

a properties (Dependent = frue)

2! area;

1@ end

11 methods

12 function out = get.area(obj)

13 out = obj.getarea();

14 and

15 function obj = Shape(centerX,centery)

16 obj.centerX = centerX;

17 obj.centerY = centery;

18 end

19 end

28 methods (Abstract = true)

21 getarea(obj);

22 end

23 methods (Static)

24 function d = distanceBetweenShapes(shapel,shape2)
25 ¥Dist = abs({shapel.centerX - shapel.centerX);
26 yDist = abs(shapel.centerY - shapel.centerY);
27 d = sqrt(xDist"2 + yDist"2);

28 end

29 end

38 end

31

32
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Generate Code for MATLAB Handle Classes and System Objects

This example shows how to generate code for a user-defined System object and then view the
generated code in the code generation report.

1 In a writable folder, create a System object, AddOne, which subclasses from matlab.System.
Save the code as AddOne.m.

classdef AddOne < matlab.System
% ADDONE Compute an output value that increments the input by one

methods (Access=protected)
% stepImpl method is called by the step method
function y = stepImpl(~,x)
y = xX+1;
end
end
end

2 Write a function that uses this System object.

function y = testAddOne(x)

s#codegen
p = AddOne();
y = p.step(x);
end

3  Generate a MEX function for this code.

codegen -report testAddOne -args {0}

The - report option instructs codegen to generate a code generation report, even if no errors
or warnings occur. The -args option specifies that the testAddOne function takes one scalar
double input.

Click the View report link.

5 Inthe MATLAB Source pane, click testAddOne. To see information about the variables in
testAddOne, click the Variables tab.
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] GoTo~ 4

ot e A S |
NAVIGATE | TRacE | EDIT | sHARe |
MATLAB SOURCE testAddOne.m
Function List Call Tree 1 function y - tesy
T £ testAddOne.m i ?{:miei;;ome(); ? )
fx testAddOne 2 gj, p.step(x); | 521X
- .ﬂ One.m 5 en Class AddOne
fc AddOne
fx steplmpl

ERATED CODE
= B Source Files
[ c_mexapi_version.c
@ rt_nonfinite.h
B rwtypesh
[ testAddOne.c
B testAddOne h
[ testAddOne_data.c VARIABLES
B testAddOne_data.h

[ testAddOne_initialize.c flame Type Size Class
B testAddOne_initialize.h y Output 11 double
[ testAddOne_terminate.c X Input 1x1 double
B testAddOne_terminate h rp Local 1x1 AddOne

A testAddOne_types.h
T [ Interface Files

[ _coder_testAddOne_api.c

B _coder_testAddOne_apih

[ _coder_testAddOne_info.c
B _coder_testAddOne_infoh
[ _coder_testAddOne_mex.c
B _ceder_testAddOne mex.h

6 To view the class definition for addOne, in the MATLAB Source pane, click AddOne.

Back Forward A\ Find Trace Edit In Package
Code MATLAB Code v
NAYIGATE | TRAGE | EDIT | SHARE
MATLAE SCOURCE AddOne.m
Function List Call Trae 1 classdef AddOne < matlab.System
3 £ testAddOne.m 2 % ADDONME Compute an output walue that increments the input by one
' 3
fx testAddOne 4  methods (Access=protected)
5] ¥ AddOne.m 5 % stepImpl method is called by the step metheod
Jfx AddOne 6 function y = stepImpl(~,x)
Jfx steplmpl 7 ¥y o= X+1;
8 end
9 end
18 end
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See Also

More About

. “Code Generation for Handle Class Destructors” on page 15-15
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Code Generation for Handle Class Destructors

You can generate code for MATLAB code that uses delete methods (destructors) for handle classes.
To perform clean-up operations, such as closing a previously opened file before an object is
destroyed, use a delete method. The generated code calls the delete method at the end of an
object's lifetime, even if execution is interrupted by a run-time error. When System objects are
destroyed, delete calls the release method, which in turn calls the user-defined releaseImpl.
For more information on when to define a delete method in a MATLAB code, see “Handle Class
Destructor”.

Guidelines and Restrictions

When you write the MATLAB code, adhere to these guidelines and restrictions:

Code generation does not support recursive calls of the delete method. Do not create an object
of a certain class inside the delete method for the same class. This usage might cause a
recursive call of delete and result in an error message.

The generated code always calls the delete method, when an object goes out of scope. Code
generation does not support explicit calls of the delete method.

Initialize all properties of MyClass that the delete method of MyClass uses either in the
constructor or as the default property value. If delete tries to access a property that has not
been initialized in one of these two ways, the code generator produces an error message.

Suppose a property propl of MyClass1 is itself an object (an instance of another class
MyClass?2). Initialize all properties of MyClass?2 that the delete method of MyClass1 uses.
Perform this initialization either in the constructor of MyClass2 or as the default property value.
If delete tries to access a property of MyClass2 that has not been initialized in one of these two
ways, the code generator produces an error message. For example, define the two classes
MyClassl and MyClass?2:

classdef MyClassl < handle
properties
propl
end
methods
function h = MyClassl(index)
h.propl = index;
end
function delete(h)
fprintf('h.propl.prop2 is: %1.0f\n',h.propl.prop2);
end
end
end

classdef MyClass2 < handle
properties
prop2
end
end

Suppose you try to generate code for this function:

function MyFunction
obj2 = MyClass2;
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objl = MyClassl(obj2); % Assign objl.propl to the input (obj2)
end

The code generator produces an error message because you have not initialized the property
obj2.prop2 that the delete method displays.

Behavioral Differences of Objects in Generated Code and in MATLAB

The behavior of objects in the generated code can be different from their behavior in MATLAB in
these situations:

The order of destruction of several independent objects might be different in MATLAB than in the
generated code.

The lifetime of objects in the generated code can be different from their lifetime in MATLAB.
MATLAB calls the delete method when an object can no longer be reached from any live
variable. The generated code calls the delete method when an object goes out of scope. In some
situations, this difference causes delete to be called later on in the generated code than in
MATLAB. For example, define the class:

classdef MyClass < handle
methods
function delete(h)
global g
% Destructor displays current value of global variable g
fprintf('The global variable is: %1.0f\n',qg);
end
end
end

Run the function:

function MyFunction

global

g=1;

obj = MyClass;

obj = MyClass;

% MATLAB destroys the first object here
g=2;

% MATLAB destroys the second object here

% Generated code destroys both objects here
end

The first object can no longer be reached from any live variable after the second instance of obj
= MyClass in MyFunction. MATLAB calls the delete method for the first object after the
second instance of obj = MyClass in MyFunction and for the second object at the end of the
function. The output is:

The global variable is: 1
The global variable is: 2

In the generated code, both delete method calls happen at the end of the function when the two
objects go out of scope. Running MyFunction mex results in a different output:

The global variable is: 2
The global variable is: 2
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* In MATLAB, persistent objects are automatically destroyed when they cannot be reached from
any live variable. In the generated code, you have to call the terminate function explicitly to
destroy the persistent objects.

* The generated code does not destroy partially constructed objects. If a handle object is not fully
constructed at run time, the generated code produces an error message but does not call the
delete method for that object. For a System object, if there is a run-time error in setupImpl, the
generated code does not call releaseImpl for that object.

MATLAB does call the delete method to destroy a partially constructed object.
See Also

More About
. “Generate Code for MATLAB Handle Classes and System Objects” on page 15-12
. “System Objects in MATLAB Code Generation” on page 15-25
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Class Does Not Have Property

If a MATLAB class has a method, mymethod, that returns a handle class with a property, myprop, you
cannot generate code for the following type of assignment:

obj.mymethod() .myprop=...
For example, consider the following classes:

classdef MyClass < handle

properties
myprop
end
methods
function this = MyClass
this.myprop = MyClass2;

end
function y = mymethod(this)
y = this.myprop;
end
end
end

classdef MyClass2 < handle
properties
aa
end
end
You cannot generate code for function foo.
function foo
h = MyClass;
h.mymethod().aa = 12;

In this function, h.mymethod () returns a handle object of type MyClass2. In MATLAB, the
assignment h.mymethod () .aa = 12; changes the property of that object. Code generation does
not support this assignment.

Solution

Rewrite the code to return the object and then assign a value to a property of the object.
function foo

h = MyClass;

b=h.mymethod () ;
b.aa=12;
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See Also

More About
. “MATLAB Classes Definition for Code Generation” on page 15-2
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Passing By Reference Not Supported for Some Properties

The code generator does not support passing a property by reference to an external function for
these types of properties:

* A property with a get method or a set method.

* A property that uses validation functions.

* A System object property with an attribute, such as Logical or PositiveInteger, that
constrains or modifies the property value.

Instead of passing a property by reference, save the property value in a temporary variable. Then,
pass the temporary variable by reference to the external function. After the external function call,
assign the temporary variable to the property. For example:

tmp = myObj.prop;
coder.ceval('myFcn', coder.ref(tmp));
myObj.prop = tmp;

The assignment after the coder. ceval call validates or modifies the property value according to the
property access methods, validation functions, or attributes.

See Also
coder.ceval | coder.ref | coder.rref | coder.wref

More About

. “Call Custom C/C++ Code from the Generated Code” on page 34-2
. “MATLAB Classes Definition for Code Generation” on page 15-2
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Handle Object Limitations for Code Generation

The code generator statically determines the lifetime of a handle object. When you use handle
objects, this static analysis has certain restrictions.

With static analysis the generated code can reuse memory rather than rely on a dynamic memory
management scheme, such as reference counting or garbage collection. The code generator can
avoid dynamic memory allocation and run-time automatic memory management. These generated
code characteristics are important for some safety-critical and real-time applications.

For limitations, see:

* “A Variable Outside a Loop Cannot Refer to a Handle Object Allocated Inside a Loop” on page 15-
21

* “A Handle Object That a Persistent Variable Refers To Must Be a Singleton Object” on page 15-22

The code generator analyzes whether all variables are defined prior to use. Undefined variables or
data types cause an error during code generation. In certain circumstances, the code generator
cannot determine if references to handle objects are defined. See “References to Handle Objects Can
Appear Undefined” on page 15-23.

A Variable Outside a Loop Cannot Refer to a Handle Object Allocated
Inside a Loop

Consider the handle class mycls and the function usehandlel.

classdef mycls < handle
properties
prop
end

methods
function obj = mycls(x)
obj.prop = Xx;
end
end
end

function y = usehandlel
p = mycls(@); % Instance of mycls with prop value 10 created

1:10
mycls(i); % Handle object allocated inside loop

for i
p

end

y = p.prop; % Handle object referenced outside loop
end

If you try to generate code for the usehandlel function, the code generator produces an error. The
error occurs because:

* A handle object is allocated inside the for loop. The variable p.prop refers to this handle object.
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* Outside the loop, the variable x refers to the property prop handle object.

A Handle Object That a Persistent Variable Refers To Must Be a
Singleton Object

If a persistent variable refers to a handle object, the code generator allows only one instance of the
object during the program’s lifetime. The object must be a singleton object. To create a singleton
handle object, enclose statements that create the object in the if isempty() guard for the
persistent variable.

For example, consider the class mycls and the function usehandle2. The code generator reports an
error for usehandle2 because p.prop refers to the mycls object that the statement inner =
mycls creates. This statement creates a mycls object for each invocation of usehandle2.

classdef mycls < handle
properties
prop
end
end

function usehandle2(x)
assert(isa(x, 'double'));
persistent p;
inner = mycls;
inner.prop = X;
if isempty(p)
p = mycls;
p.prop = inner;
end

If you move the statements inner = mycls and inner.prop = xinside the if isempty() guard,
code generation succeeds. The statement inner = mycls executes only once during the program'’s
lifetime.

function usehandle2(x)
assert(isa(x, 'double'));
persistent p;
if isempty(p)
inner = mycls;
inner.prop = X;
p = mycls;
p.prop = inner;
end

Consider the function usehandle3. The code generator reports an error for usehandle3 because
the persistent variable p refers to the mycls object that the statement myobj = mycls creates. This
statement creates a mycls object for each invocation of usehandle3.

function usehandle3(x)
assert(isa(x, 'double'));
myobj = mycls;

myobj.prop = X;
doinit(myobj);
disp(myobj.prop);
function doinit(obj)
persistent p;
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if isempty(p)
p = obj;
end

If you make myobj persistent and enclose the statement myobj = mycls inside an if isempty()
guard, code generation succeeds. The statement myobj = mycls executes only once during the
program’s lifetime.

function usehandle3(x)
assert(isa(x, 'double'));
persistent myobj;
if isempty(myobj)

myobj = mycls;
end

doinit(myobj);

function doinit(obj)
persistent p;
if isempty(p)
p = obj;
end

References to Handle Objects Can Appear Undefined

Consider the function refHandle that copies a handle object property to another ohject. The
function uses a simple handle class and value class. In MATLAB, the function runs without error.

function [outl, out2, out3] = refHandle()
x = myHandleClass;

y=Xr

v = myValueClass();

v.prop = Xx;

X.prop = 42;

outl = x.prop;

out2 = y.prop;

out3 = v.prop.prop;
end

classdef myHandleClass < handle
properties

prop
end
end

classdef myValueClass
properties
prop

end
end
During code generation, an error occurs:
Property 'v.prop.prop' is undefined on some execution paths.

Three variables reference the same memory location: x, y, and v.prop. The code generator
determines that x.prop and y.prop share the same value. The code generator cannot determine
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that the handle object property v.prop.prop shares its definition with x.prop and y.prop. To
avoid the error, define v.prop.prop directly.
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System Objects in MATLAB Code Generation

In this section...

“Usage Rules and Limitations for System Objects for Generating Code” on page 15-25
“System Objects in codegen” on page 15-27

“System Objects in the MATLAB Function Block” on page 15-27

“System Objects in the MATLAB System Block” on page 15-27

“System Objects and MATLAB Compiler Software” on page 15-27

You can generate C/C++ code in MATLAB from your system that contains System objects by using
MATLAB Coder. You can generate efficient and compact code for deployment in desktop and
embedded systems and accelerate fixed-point algorithms.

Usage Rules and Limitations for System Objects for Generating Code

The following usage rules and limitations apply to using System objects in code generated from
MATLAB.

Object Construction and Initialization

» If objects are stored in persistent variables, initialize System objects once by embedding the
object handles in an if statement with a call to isempty ().

* Set arguments to System object constructors as compile-time constants.

+ [Initialize all System objects properties that releaseImpl uses before the end of setupImpl.

* You cannot initialize System objects properties with other MATLAB class objects as default values
in code generation. You must initialize these properties in the constructor.

Inputs and Outputs

* System objects accept a maximum of 1024 inputs. A maximum of eight dimensions per input is
supported.

* The data type of the inputs should not change.

* The complexity of the inputs should not change.

+ If you want the size of inputs to change, verify that support for variable-size is enabled. Code
generation support for variable-size data also requires that variable-size support is enabled. By
default in MATLAB, support for variable-size data is enabled.

* System objects predefined in the software do not support variable-size if their data exceeds the
DynamicMemoryAllocationThreshold value.

* Do not set System objects to become outputs from the MATLAB Function block.

* Do not use the Save and Restore Simulation Operating Point option for any System object in a
MATLAB Function block.

* Do not pass a System object as an example input argument to a function being compiled with
codegen.

* Do not pass a System object to functions declared as extrinsic (functions called in interpreted
mode) using the coder.extrinsic function. System objects returned from extrinsic functions
and scope System objects that automatically become extrinsic can be used as inputs to another
extrinsic function. But, these functions do not generate code.
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Properties

* In MATLAB System blocks, you cannot use variable-size for discrete state properties of System
objects. Private properties can be variable-size.

* Objects cannot be used as default values for properties.

* You can only assign values to nontunable properties once, including the assignment in the
constructor.

* Nontunable property values must be constant.

» For fixed-point inputs, if a tunable property has dependent data type properties, you can set
tunable properties only at construction time or after the object is locked.

* For getNumInputsImpl and getNumOutputsImpl methods, if you set the return argument from
an object property, that object property must have the Nontunable attribute.
Global Variables

* Global variables are allowed in a System object, unless you are using that System object in
Simulink via the MATLAB System block. See “Generate Code for Global Data” on page 27-91.

Methods
* Code generation support is available only for these System object methods:

+ get
* getNumInputs
e getNumOutputs
+ 1isDone (for sources only)
* islLocked
* release
* reset
* set (for tunable properties)
* step
» For System objects that you define, code generation support is available only for these methods:

+ getDiscreteStateImpl

* getNumInputsImpl

¢ getNumOutputsImpl

* infoImpl

* isDoneImpl

o isInputDirectFeedthroughImpl
* outputImpl

* processTunedPropertiesImpl

* releaseImpl — Code is not generated automatically for this method. To release an object,
you must explicitly call the release method in your code.

* resetImpl
* setupImpl
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* stepImpl

e updateImpl

* validateInputsImpl

* validatePropertiesImpl

System Objects in codegen

You can include System objects in MATLAB code in the same way you include any other elements. You
can then compile a MEX file from your MATLAB code by using the codegen command, which is
available if you have a MATLAB Coder license. This compilation process, which involves a number of
optimizations, is useful for accelerating simulations. See “Get Started with MATLAB Coder” and
“MATLAB Classes” for more information.

Note Most, but not all, System objects support code generation. Refer to the particular object’s
reference page for information.

System Objects in the MATLAB Function Block

Using the MATLAB Function block, you can include any System object and any MATLAB language
function in a Simulink model. This model can then generate embeddable code. System objects
provide higher-level algorithms for code generation than do most associated blocks. For more

information, see “Implement MATLAB Functions in Simulink with MATLAB Function Blocks”
(Simulink).

System Objects in the MATLAB System Block

Using the MATLAB System block, you can include in a Simulink model individual System objects that
you create with a class definition file. The model can then generate embeddable code. For more
information, see “MATLAB System Block” (Simulink).

System Objects and MATLAB Compiler Software

MATLAB Compiler software supports System objects for use inside MATLAB functions. The compiler
product does not support System objects for use in MATLAB scripts.

See Also

More About
. “Generate Code That Uses Row-Major Array Layout” on page 38-4
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Specify Objects as Inputs at the Command Line

If you generate code by using codegen, to specify the type of an input that is a value class object, you
can provide an example object with the -args option.

1 Define the value class. For example, define a class myRectangle.

classdef myRectangle
properties
length;
width;
end
methods
function obj = myRectangle(l,w)
if nargin > 0
obj.length = 1;
obj.width = w;
end
end
function area = calcarea(obj)
area = obj.length * obj.width;
end
end
end

2 Define a function that takes an object of the value class as an input. For example:
function z = getarea(r)
s#codegen

z = calcareal(r);
end

3 Create an object of the class.

rect_obj myRectangle(4,5)

rect obj
myRectangle with properties:

length: 4
width: 5

4 Pass the example object to codegen by using the -args option.
codegen getarea -args {rect obj} -report

In the code generation report, you see that r has the same properties, length and width, as the
example object rect object. The properties have the same size and type as they do in the
example object, rect object.

Name Type Size Class
z Output 1=1 double
r Input 1=1 myRectangle

length 1=1 double
width 1=1 double

Instead of providing an example object, you can create a type for an object of the value class, and
then provide the type with the -args option.
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1 Create an object of the class:
rect_obj = myRectangle(4,5)
rect obj =

myRectangle with properties:

length: 4
width: 5
2 To create a type for an object of myRectangle that has the same property types as rect obj,
use coder. typeof.

coder.typeof creates a coder.ClassType object that defines a type for a class.
t= coder.typeof(rect _obj)
t =

coder.ClassType
1x1 myRectangle
length: 1x1 double
width : 1x1 double

3  Pass the type to codegen by using the -args option.
codegen getarea -args {t} -report

After you create a type for a value class, you can change the types of the properties. For example, to
make the properties of t 16-bit integers:

t.Properties.length = coder.typeof(intl6(1))
t.Properties.width = coder.typeof(intl6(1))

You can also add or delete properties. For example, to add a property newprop:

t.Properties.newprop = coder.typeof(intl6(1))

Consistency Between coder.ClassType Object and Class Definition File

When you generate code, the properties of the coder.ClassType object that you pass to codegen
must be consistent with the properties in the class definition file. If the class definition file has
properties that your code does not use, the coder.ClassType object does not have to include those
properties. The code generator removes properties that you do not use.

Limitations for Using Objects as Entry-Point Function Inputs

Entry-point function inputs that are objects have these limitations:

* An object that is an entry-point function input must be an object of a value class. Objects of handle
classes cannot be entry-point function inputs. Therefore, a value class that contains a handle class
cannot be an entry-point function input.

* An object cannot be a global variable.

» If an object has duplicate property names, you cannot use it with coder.Constant. Duplicate
property names occur in an object of a subclass in these situations:
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* The subclass has a property with the same name as a property of the superclass.
* The subclass derives from multiple superclasses that use the same name for a property.

For information about when MATLAB allows duplicate property names, see “Subclassing Multiple
Classes”.

See Also
coder.ClassType

More About

. “Automatically Define Input Types by Using the App” on page 24-4

. “Define Input Parameter by Example by Using the App” on page 24-6
. “MATLAB Classes Definition for Code Generation” on page 15-2

. “Specify Objects as Inputs in the MATLAB Coder App” on page 15-31
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Specify Objects as Inputs in the MATLAB Coder App

In the MATLAB Coder app, to specify the type of an input that is a value class object:

1

Define the value class. For example, define a class myRectangle.

classdef myRectangle
properties
length;
width;
end
methods
function obj = myRectangle(l,w)
if nargin > 0
obj.length = 1;
obj.width = w;
end
end
function area = calcarea(obj)
area = obj.length * obj.width;
end
end
end

Define a function that takes an object of the value class as an input. For example:
function z = getarea(r)
%#codegen

z = calcareal(r);
end

In the app, create a project for getarea. On the Define Input Types page, specify the type of
the object in one of these ways:

* Automatically define a value class input type on page 15-31.

* Provide an Example Object on page 15-31.

Automatically Define an Object Input Type

Write a test file getarea test that creates an object of the myRectangle class and passes it to
getarea. For example:

rect obj = myRectangle(4,5);
rect area = getarea(rect obj);
disp(rect area);

In the app, on the Define Input Types page, specify the test file getarea test.
Click Autodefine Input Types.

Provide an Example

If you provide an object of the value class, the app uses the sizes and types of the properties of the
example object.

1

In MATLAB, define an object of the value class myRectangle.

rect obj = myRectangle(4,5)
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2 In the app, on the Define Input Types page, click Let me enter input or global types
directly.

Click the field to the right of the input parameter r.
Select Define by Example.

Enter rect_obj or select it from the list of workspace variables.

The app determines the properties and their sizes and types from the example object.

& getarea.m Mumber of outputs: | 215
length double(1 x 1)
width double(1 x 1)

Alternatively, you can provide the name of the value class, myRectangle, or a coder.ClassType
object for that class. To define a coder.ClassType object, use coder.typeof. For example:

1 In MATLAB, define a coder.ClassType object that has the same properties as rect obj.

t = coder.typeof(rect obj)
2 In the app, provide t as the example.

To change the size or type of a property, click the field to the right of the property.

Consistency Between the Type Definition and Class Definition File

When you generate code, the properties that you define in the app must be consistent with the
properties in the class definition file. If the class definition file has properties that your code does not
use, your type definition in the app does not have to include those properties. The code generator
removes properties that your code does not use.

Limitations for Using Objects as Entry-Point Function Inputs

Entry-point function inputs that are objects have these limitations:

* An object that is an entry-point function input must be an object of a value class. Objects of handle
classes cannot be entry-point function inputs. Therefore, a value class that contains a handle class
cannot be an entry-point function input.

* An object cannot be a global variable.

« If an object has duplicate property names, you cannot use it with coder.Constant. Duplicate
property names occur in an object of a subclass in these situations:
* The subclass has a property with the same name as a property of the superclass.
* The subclass derives from multiple superclasses that use the same name for a property.

For information about when MATLAB allows duplicate property names, see “Subclassing Multiple
Classes”.
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See Also
coder.ClassType

More About

. “Automatically Define Input Types by Using the App” on page 24-4

. “Define Input Parameter by Example by Using the App” on page 24-6
. “Specify Objects as Inputs at the Command Line” on page 15-28

. “MATLAB Classes Definition for Code Generation” on page 15-2
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Work Around Language Limitation: Code Generation Does Not
Support Object Arrays

15-34

Issue

In certain situations, your MATLAB algorithm uses an array of objects that are instances of the same
class. But code generation does not support object arrays. When attempting to generate code for
such MATLAB code, you get this or a similar error message:

Code generation does not support object arrays.

Possible Solutions
Use Cell Array of Objects

Code generation supports cell arrays of objects. In your MATLAB code, represent the collection of
objects by using a cell array instead of an array.

For example, suppose that your MATLAB algorithm uses the class Square:

classdef Square
properties(Access = private)
side
end

methods (Access = public)
function obj = Square(side)
obj.side = side;

end

function area = calculateArea(obj)
area = obj.side”2;
end
end
end

The function addAreas constructs and uses a 1-by-3 array of Square objects:

function y = addAreas(n)
obj = Square(0);
collection = [obj obj objl; % collection is an array

for i = 1:numel(collection)
collection(i) = Square(n + 1);

end
y = 0;
for i = 1:numel(collection)
y =y + collection(i).calculateArea;
end
end

Attempt to generate a MEX function for addAreas. Code generation fails because the local variable
collection is an object array.
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codegen addAreas -args 0 -report
?7?? Code generation does not support object arrays.

Error in ==> addAreas Line: 3 Column: 14
Code generation failed: View Error Report

Redefine collection to be a cell array instead. Modify the code to use cell array indexing to index
into collection. Name the modified function addAreas new.

function y = addAreas new(n)
obj = Square(0);
collection = {obj obj obj}; % collection is a cell array

for i = 1:numel(collection)
collection{i} = Square(n + 1i);

end
y =0;
for i = 1:numel(collection)
y =y + collection{i}.calculateArea;
end
end

Attempt to generate a MEX function for addAreas new. Code generation succeeds and produces
addAreas new_mex.

codegen addAreas new -args 0 -report

Code generation successful: View report

Verify that addAreas new and addAreas new mex have the same runtime behavior.
disp([addAreas new(0) addAreas new mex(0)])

14 14

For Assignment with Nonscalar Indexing, Use Curly Braces and deal

Suppose that your original MATLAB code performs assignment to the array of objects by using
nonscalar indexing. For example, you might add this line after the first for loop in the addAreas
function:

collection(1l:2) = [Square(10) Square(20)];

In the modified function addAreas new, index into the corresponding cell array by using curly
braces {} and perform assignment by using the deal function. Replace the above line by:

[collection{l:2}] = deal(Square(10),Square(20));
See Also

More About
. “MATLAB Classes Definition for Code Generation” on page 15-2
. “What Is a Cell Array?”
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Generate C++ Classes for MATLAB Classes

16-2

When you generate C++ code, the default behavior of the code generator produces C++ classes for
the classes in your MATLAB code. These include all MATLAB classes such as value classes, handle
classes, and system objects.

You can change the default behavior of the code generator to produce structures for MATLAB classes.
To change the default behavior, do one of the following:

* In a code configuration object, set TargetLang to 'C++' and CppPreserveClasses to false.

* In the MATLAB Coder app, in the Generate step, set Language to C++. In the project build
settings, on the Code Appearance tab, clear the Generate C++ classes from MATLAB classes
check box.

These examples illustrate certain rules that the code generator follows when mapping MATLAB

classes to C++ classes.

Example: Generate Code for a Handle Class That Has Private and
Public Members

Define a MATLAB handle class MyClass:

classdef MyClass < handle
properties
publicProp = 1;

end
properties(Access = private)
privateProp
end
methods
function obj = MyClass(value)
obj.privateProp = value;
end
function publicMethod(obj,value)
obj.privateMethod(value);
end
function res = calculateSomeValue(obj)
res = obj.publicProp*obj.privateProp;
end
end

methods (Access = private)
function privateMethod(obj,value)
obj.publicProp = obj.publicProp + value;
obj.privateProp = obj.privateProp + obj.doubleThisValue(value);

end
end
methods (Static)
function res = doubleThisValue(val)
res = 2 * val;
end
end

end

Define a MATLAB function foo that uses MyClass:
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function out = foo(x,y)

obj = MyClass(x);
obj.publicMethod(y);

out = obj.calculateSomeValue;
end

Generate a static C++ library for foo. Specify the input argument to be a double scalar. Set the code
generation configuration property InlineBetweenUserFunctions to 'Readability".

cfg = coder.config('lib"');

cfg.TargetLang = 'C++';
cfg.InlineBetweenUserFunctions = 'Readability’;
codegen -config cfg foo -args {0,0} -report

Code generation successful: View report

Open the code generation report and inspect the generated code. The file MyClass. h contains the
definition of the generated C++ class MyClass:

class MyClass
{
public:
MyClass *init(double value);
void publicMethod(double value);
static double doubleThisValue(double val);
double calculateSomeValue() const;
double publicProp;
private:
double privateProp;
+

This is the code generated for the function foo:

double foo(double x, double y)

{
MyClass obj;
obj.init(x);
obj.publicMethod(y);
return obj.calculateSomeValue();
}

This table lists some of the rules that the code generator follows when generating C++ classes and
the corresponding snippets from the code generated for MyClass.

Rule Code Snippet

The class constructor in MATLAB is mapped onto |The file MyClass . cpp contains the definition of
an init method. When an instance of the class is |init.

created, the generated code explicitly calls the o
init method. MyClass *MyClass::init(double value)

{

MyClass *obj;

obj = this;
obj->publicProp = 1.0;
obj->privateProp = value;
return obj;
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Rule

Code Snippet

In most cases, if a class member is set as private
in MATLAB, it is also set as private in the
generated C++ code.

In certain situations, inlining a public method in
the generated C++ code changes a private
property in the your MATLAB code to a public
property in the generated code and breaks data
encapsulation. For example, suppose that a public
method myMethod that uses a private property
prop of the object is called by an entry-point
function. If myMethod is inlined in the generated
code, the property prop must be visible from
outside the object and changed to a public
property.

To limit this occurrence, the code generator uses
a special inlinig rule for public methods in this
situation:

» If the code configuration property
InlineBetweenUserFunctions or the
equivalent code generation setting Inline
between user functions in the MATLAB
Coder app is set to 'Readability’, the code
generator does not inline the public method
calls that appear outside the class definition.

In these situations, the same inlining rules apply
to both ordinary functions and public methods:

* The body of the function or the method
contains an explicit
coder.inline('always') or
coder.inline( 'never') directive. This
directive gets the highest precedence.

* You set the code configuration property
InlineBetweenUserFunctions or the
equivalent code generation setting Inline
between user functions in the MATLAB
Coder app to 'Never', 'Speed’, or
'Always"'.

* A call to a method appears inside another
method of the same class.

See “Control Inlining to Fine-Tune Performance
and Readability of Generated Code” on page 35-
9.

The definition of the generated C++ class
MyClass is:

class MyClass

{
public:
MyClass *init(double value);
void publicMethod(double value);
static double doubleThisValue(double val)
double calculateSomeValue() const;
double publicProp;

private:

double privateProp;

};

The visibility of all data and member functions is
preserved between MATLAB and the generated
code.

The private method privateMethod does not
appear in this definition. privateMethod is
inlined in the definition of publicMethod (see in
the file MyClass. cpp) :

void MyClass::publicMethod(double value)

this->publicProp += value;
this->privateProp += MyClass::doubleThisVal
}

ue( (value)
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Rule

Code Snippet

Static methods in MATLAB are mapped onto
static C++ methods.

The generated code for the static method
doubleThisValue has this signature:

static double doubleThisValue(double val);

Methods that do not mutate the object are
marked with the const qualifier in the generated
code.

The public method calculateSomeValue does
not mutate the object. The generated method has
this signature:

double calculateSomeValue() const;

Additional Usage Notes and Limitations

These are some additional usage notes and limitations for generating C++ classes from MATLAB

classes:

* The class prototype for MyClass is contained in the header file MyClass . h. The implementations
of the methods of the class are contained in the file MyClass. cpp.

* In the generated code, class hierarchies are flattened. For example, suppose that in your MATLAB
code, class B inherits from class A. In the generated C++ code, classes B and A have no
inheritance relationship between them. In the generated code, all properties and methods of class

A are reproduced in the definition of class B.

* When a MATLAB class uses different types for its properties, the code generator produces a

separate C++ class for each type usage.

» Ifa MATLAB class member has different GetAccess and SetAccess attributes, the
corresponding member of the generated class has the more permissive of the two attributes. For

example, if a property prop has the attributes (GetAccess

public, SetAccess

private), prop is defined to be a public property in the generated code.

» While attempting to generate standalone code that contains C++ classes for MATLAB classes, you
might get a warning message if both of these conditions are true:

* You choose to generate reentrant code by enabling the MultiInstanceCode parameter in a
code configuration object or by enabling the Generate re-entrant code parameter in the

MATLAB Coder app.

* The destructor of a class in your MATLAB code has a persistent variable or calls another
function that declares and uses a persistent variable.

In such situations, to generate code that contains C++ classes for MATLAB classes, disable the
MultiInstanceCode or the Generate re-entrant code parameter.

See Also

coder.CodeConfig | coder.EmbeddedCodeConfig | coder.MexCodeConfig

More About

. “Creating a Simple Class”

. “MATLAB Classes Definition for Code Generation” on page 15-2
. “System Objects in MATLAB Code Generation” on page 15-25
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. “Control Inlining to Fine-Tune Performance and Readability of Generated Code” on page 35-9
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Function Handle Limitations for Code Generation

17-2

When you use function handles in MATLAB code intended for code generation, adhere to the
following restrictions:

Do not use the same bound variable to reference different function handles

In some cases, using the same bound variable to reference different function handles causes a
compile-time error. For example, this code does not compile:

function y = foo(p)
x = @plus;
ifp
X = @minus;
end
y = x(1, 2);

Do not pass function handles to or from coder. ceval

You cannot pass function handles as inputs to or outputs from coder. ceval. For example, suppose
that f and str. f are function handles:

f = @sin;
str.x = pi;
str.f = f;

The following statements result in compilation errors:

coder.ceval('foo', @sin);

coder.ceval('foo', f);

coder.ceval('foo', str);

Do not associate a function handle with an extrinsic function

You cannot create a function handle that references an extrinsic MATLAB function.

Do not pass function handles to or from extrinsic functions

You cannot pass function handles to or from feval and other extrinsic MATLAB functions.

Do not pass function handles to or from entry-point functions

You cannot pass function handles as inputs to or outputs from entry-point functions. For example,
consider this function:

function x = plotFcn(fhandle, data)
assert(isa(fhandle, 'function handle') && isa(data, 'double'));

plot(data, fhandle(data));
x = fhandle(data);

In this example, the function plotFcn receives a function handle and its data as inputs. plotFcn
attempts to call the function referenced by the fhandle with the input data and plot the results.
However, this code generates a compilation error. The error indicates that the function isa does not
recognize ' function handle' as a class name when called inside a MATLAB function to specify
properties of inputs.
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See Also

More About

. “Use the coder.extrinsic Construct” on page 20-7

17-3






Code Generation for Deep Learning
Arrays

* “Code Generation for dlarray” on page 18-2
* “dlarray Limitations for Code Generation” on page 18-12



18 code Generation for Deep Learning Arrays

Code Generation for dlarray

18-2

In this section...

“Define dlarray for Code Generation” on page 18-2
“dlarray Object Functions with Code Generation Support” on page 18-3
“Deep Learning Toolbox Functions with dlarray Code Generation Support” on page 18-4

“MATLAB Functions with dlarray Code Generation Support” on page 18-4

A deep learning array stores data with optional data format labels for custom training loops, and
enables functions to compute and use derivatives through automatic differentiation. To learn more
about custom training loops, automatic differentiation, and deep learning arrays, see “Deep Learning
Custom Training Loops” (Deep Learning Toolbox).

Code generation supports both formatted and unformatted deep learning arrays. dlarray objects

containing gpuArrays are also supported for code generation. When you use deep learning arrays
with CPU and GPU code generation, adhere to these restrictions:

Define dlarray for Code Generation

For code generation, use the dlarray function to create deep learning arrays. For example, suppose
you have a pretrained dlnetwork network object in the mynet.mat MAT-ile. To predict the
responses for this network, create an entry-point function in MATLAB.

There are two possibilities:

Note For code generation, the dlarray input to the predict method of the dlnetwork object must
be single data type.

Design 1 (Not recommended)

In this design example, the input and output to the entry-point function, foo are of dlarray types.
This type of entry-point function is not recommended for code generation because in MATLAB,
dlarray enforces the order of labels 'SCBTU'. This behavior is replicated for MEX code generation.
However, for standalone code generation such as static, dynamic libraries, or executables, the data
format follows the specification of the fmt argument of the dlarray object. As a result, if the input
or output of an entry-point function is a dlarray object and its order of labels is not 'SCBTU', then
the data layout will be different between the MATLAB environment and standalone code.

function dlOut = foo(dlIn)
persistent dlnet;
if isempty(dlnet)
dlnet = coder.loadDeepLearningNetwork('mynet.mat"');
end

dlOut = predict(dlnet, dlIn);

end
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Design 2 (Recommended)

In this design example, the input and output to foo are of primitive datatypes and the dlarray
object is created within the function. The extractdata method of the dlarray object returns the
data in the dlarray d1A as the output of foo. The output a has the same data type as the underlying
data type in dlA.

When compared to Design 1, this entry-point design has the following advantages:

* Easier integration with standalone code generation workflows such as static, dynamic libraries, or
executables.

* The data format of the output from the extractdata function has the same order (' SCBTU') in
both the MATLAB environment and the generated code.

* Improves performance for MEX workflows.

* Simplifies Simulink workflows using MATLAB Function blocks as Simulink does not natively
support dlarray objects.

function a = foo(in)
dlIn = dlarray(in, 'SSC');

persistent dlnet;
if isempty(dlnet)
dlnet = coder.loadDeepLearningNetwork('mynet.mat');
end
dlA = predict(dlnet, dlIn);
a = extractdata(dlA);

end

To see an example of dlnetwork and dlarray usage with MATLAB Coder, see “Generate Digit
Images Using Variational Autoencoder on Intel CPUs” on page 39-146.

dlarray Object Functions with Code Generation Support

For code generation, you are restricted to the deep learning array object functions listed in this table.

dims Dimension labels for dlarray
extractdata Extract data from dlarray
finddim Find dimensions with specified label
stripdims Remove dlarray labels
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Deep Learning Toolbox Functions with dlarray Code Generation

Support

Deep Learning Operations

Function Description

fullyconnect The fully connect operation multiplies the input
by a weight matrix and then adds a bias vector.

sigmoid The sigmoid activation operation applies the
sigmoid function to the input data.

softmax The softmax activation operation applies the

softmax function to the channel dimension of the
input data.

MATLAB Functions with dlarray Code Generation Support

Unary Element-wise Functions

Function Notes and Limitations

abs The output dlarray has the same data format as
the input dlarray.

atan2 The output dlarray has the same data format as

cos the input dlarray.

cosh

cot

csc

exp

log * The output dlarray has the same data format

as the input dlarray.

* Because dlarray does not support complex
numbers, the input dlarray must have
nonnegative values.

sec The output dlarray has the same data format as

sign the input dlarray.

sin

sinh

sqrt * The output dlarray has the same data format
as the input dlarray.

* Because dlarray does not support complex
numbers, the input dlarray must have
nonnegative values.

tan The output dlarray has the same data format as
e the input dlarray.
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Function

Notes and Limitations

uplus, +

uminus, -

erf

Binary Element-wise Operators

Function Notes and Limitations
minus, - If the two dlarray inputs are formatted, then
plus, + the output dlarray is formatted with a

’ -~ combination of both of their data formats. The
power, . function uses implicit expansion to combine the
rdivide, ./ inputs. For more information, see “Implicit
times, .* Expansion with Data Formats” (Deep Learning

Toolbox).

Reduction Functions

Function Notes and Limitations
mean * The output dlarray has the same data format
as the input dlarray.
* The 'omitnan' option is not supported.
+ If the input dlarray is on the GPU, the
'native’ option is not supported.
prod * The output dlarray has the same data format
sum as the input dlarray.

* The 'omitnan' option is not supported.

Extrema Functions

Function Notes and Limitations
ceil The output dlarray has the same data format as
the input dlarray.
eps * The output dlarray has the same data format
as the input dlarray.
* Use eps(ones(‘like’, x)) to get a scalar
epsilon value based on the data type of a
dlarray x.
fix The output dlarray has the same data format as
the input dlarray.
floor The output dlarray has the same data format as
the input dlarray.
max *  When you find the maximum or minimum

elements of a single dlarray, the output
dlarray has the same data format as the
input dlarray.

18-5



18 code Generation for Deep Learning Arrays

Function

Notes and Limitations

min

When you find the maximum or minimum
elements between two formatted dlarray
inputs, the output dlarray has a combination
of both of their data formats. The function
uses implicit expansion to combine the inputs.
For more information, see “Implicit Expansion
with Data Formats” (Deep Learning Toolbox).

The index output argument is not traced and
cannot be used with automatic differentiation.
For more information, see “Use Automatic
Differentiation In Deep Learning Toolbox”
(Deep Learning Toolbox).

round

Only the syntax Y = round(X) is supported.

The output dlarray has the same data format
as the input dlarray.

Other Math Operations

Function

Notes and Limitations

colon, :

The supported operations are:

* a:b

* a:b:c

For information on indexing into a dlarray,
see “Indexing” (Deep Learning Toolbox).

All inputs must be real scalars. The output
dlarray is unformatted.

mtimes, *

One input can be a formatted dlarray only
when the other input is an unformatted scalar.
In this case, the output dlarray has the same
data format as the formatted dlarray input.

Multiplying a dlarray with a non-dlarray
sparse matrix is supported only when both
inputs are non-scalar.

pagemtimes

One input can be a formatted dlarray only
when the other input is unformatted, with
scalar pages. In this case, the output dlarray
has the same data format as the formatted
dlarray input.

For code generation, each transpose option of
pagemtimes must be constant.
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Logical Operations

Function Notes and Limitations
and, & If the two dlarray inputs are formatted, then
the output dlarray is formatted with a
combination of both of their data formats. The
function uses implicit expansion to combine the
inputs. For more information, see “Implicit
Expansion with Data Formats” (Deep Learning
Toolbox).
eq, == If the two dlarray inputs are formatted, then
ge, >= the output dlarray is formatted with a
’ combination of both of their data formats. The
gt, > function uses implicit expansion to combine the
le, <= inputs. For more information, see “Implicit
1t Expansion with Data Formats” (Deep Learning
, <
Toolbox).
ne, ~=
or, | If the two dlarray inputs are formatted, then
S the output dlarray is formatted with a

combination of both of their data formats. The
function uses implicit expansion to combine the
inputs. For more information, see “Implicit
Expansion with Data Formats” (Deep Learning
Toolbox).

Size Manipulation Functions

Function Notes and Limitations

reshape The output dlarray is unformatted, even if the
input dlarray is formatted.
For code generation, the size dimensions must be
fixed size.

squeeze Two-dimensional dlarray objects are unaffected

by squeeze. If the input dlarray is formatted,
the function removes dimension labels belonging
to singleton dimensions. If the input dlarray has
more than two dimensions and its third and
above dimensions are singleton, then the function
discards these dimensions and their labels.
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Function

Notes and Limitations

repelem

If you use the u = repelem(v,n) syntax and
specify the number of times to repeat each
element in repelem, the output dlarray is
unformatted even if the input dlarray is
formatted.

If you use the B = repelem(A,rl,...,rN)
syntax and specify the repetition factors for each
dimension in repelem, the output dlarray has
the same data format as the input dlarray.

repmat

The output dlarray has the same data format as
the input dlarray.

Transposition Operations

Function

Notes and Limitations

ctranspose, '

If the input dlarray is formatted, then the labels
of both dimensions must be the same. The
function performs transposition implicitly, and
transposes directly only if necessary for other
operations.

permute

If the input dlarray is formatted, then the
permutation must be among only those
dimensions that have the same label. The
function performs permutations implicitly, and
permutes directly only if necessary for other
operations.

For code generation, the dimension order must
be fixed size.

ipermute

If the input dlarray is formatted, then the
permutation must be among only those
dimensions that have the same label. The
function performs permutations implicitly, and
permutes directly only if necessary for other
operations.

For code generation, the dimension order must
be fixed size.

transpose, .

If the input dlarray is formatted, then the labels
of both dimensions must be the same. The
function performs transposition implicitly, and
transposes directly only if necessary for other
operations.
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Concatenation Functions

Function Notes and Limitations

cat The dlarray inputs must have matching formats

HorZcat or be unformatted. Mixed formatted and
unformatted inputs are supported. If any

vertcat

dlarray inputs are formatted, then the output
dlarray is formatted with the same data format.

For code generation, the dimension order to cat
function must be fixed size.

Conversion Functions

Function

Notes and Limitations

cast

* cast(dlA,newdatatype) copies the data in
the dlarray d1A into a dlarray of the
underlying data type newdatatype. The
newdatatype option must be 'double’,
'single’, or 'logical'. The output
dlarray is formatted with the same data
format as dlA.

* cast(A,'like',Y) returns an array of the
same type as Y. If Y is a dlarray, then the
output is a dlarray that has the same
underlying data type as Y. If Y is on the GPU,
then the output is on the GPU. If both A and Y
are dlarray objects, then the output
dlarray is formatted with the same data
format as the input A.

double

The output is a dlarray that contains data of
type double.

logical

The output is a dlarray that contains data of
type logical.

single

The output is a dlarray that contains data of
type single.

Comparison Functions

Function

Notes and Limitations

isequal

* The syntax with more than two input
arguments is not supported.

* Two dlarray inputs are equal if the numeric
data they represent are equal and if they both
are either formatted with the same data
format or unformatted.
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Function

Notes and Limitations

isequaln

* The syntax with more than two input
arguments is not supported.

* Two dlarray inputs are equal if the numeric
data they represent are equal (treating NaNs
as equal) and if they both are either formatted
with the same data format or unformatted.

Data Type and Value Identification Functions

Function Notes and Limitations

isfloat The software applies the function to the
islogical underlying data of an input dlarray.
isnumeric

isreal Because dlarray does not support complex

numbers, this function always returns true for a
dlarray input.

Size Identification Functions

Function

Notes and Limitations

iscolumn

This function returns true for a dlarray that is
a column vector, where each dimension except
the first is a singleton. For example, a 3-by-1-by-1
dlarray is a column vector.

ismatrix

This function returns true for dlarray objects
with only two dimensions and for dlarray
objects where each dimension except the first
two is a singleton. For example, a 3-by-4-by-1
dlarray is a matrix.

isrow

This function returns true for a dlarray that is
a row vector, where each dimension except the
second is a singleton. For example, a 1-by-3-by-1
dlarray is a row vector.

isscalar

N/A

isvector

This function returns true for a dlarray that is
a row vector or column vector. Note that
isvector does not consider a 1-by-1-by-3
dlarray to be a vector.

length

N/A

ndims

If the input dlarray d1X is formatted, then
ndims (d1X) returns the number of dimension
labels, even if some of the labeled dimensions are
trailing singleton dimensions.

numel

N/A
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Function Notes and Limitations

size If the input dlarray d1X is formatted, then
size(d1X) returns a vector of length equal to
the number of dimension labels, even if some of
the labeled dimensions are trailing singleton
dimensions.

Creator Functions

Function Notes and Limitations

false Only the 'like' syntax is supported for
dlarray.

inf

nan

ones

rand

true

Zeros

Indexing
Code generation supports indexing dlarray objects and exhibits the following behaviors:
* IfyousetdlY(idx1l,...,idxn) = dlX, then dlY and d1X must be assignment compatible.

* Size of the data must not change. Out-of-bounds assignment operation is not supported.
* The assignment statement cannot add or drop U labels.

» Code generation does not support deleting of parts of a dlarray object by using d1X(idx1,
w,idxn) = [].

See Also

Objects
dlarray | dlnetwork

Related Examples

. “Generate Digit Images Using Variational Autoencoder on Intel CPUs” on page 39-146
More About

. “dlarray Limitations for Code Generation” on page 18-12

. “Define Custom Training Loops, Loss Functions, and Networks” (Deep Learning Toolbox)
. “Train Network Using Custom Training Loop” (Deep Learning Toolbox)

. “Make Predictions Using dlnetwork Object” (Deep Learning Toolbox)
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dlarray Limitations for Code Generation

18-12

In this section...

“Recommended Usage” on page 18-12

“Limitations” on page 18-12

Recommended Usage

For code generation, use the dlarray function to create deep learning arrays. For example, suppose
you have a pretrained dlnetwork network object in the mynet.mat MATile. To predict the
responses for this network, create an entry-point function in MATLAB as shown in this code.

function a = foo(in)
dlIn = dlarray(in, 'SSC');

persistent dlnet;
if isempty(dlnet)
dlnet = coder.loadDeepLearningNetwork('mynet.mat"');
end
dlA = predict(dlnet, dlIn);
a = extractdata(dlA);

end

Limitations

For deep learning arrays, code generation has the following limitations:
* The data format argument of the dlarray object must be a compile-time constant. For example,
function out = fool()

dlA = dlarray(ones(5,4),'SSC'); %fmt 'SSC' is constant

er.1d
* The data input to the dlarray object must be fixed-size. For example, the dlarray d1A is not
supported as A is variable-sized.

function dlA = foo()

A = ones(5,4);
coder.varsize('A') %'A' is variable sized.

dlA = dlarray(A, 'SSC'); % Error: not supported.

end

* Code generation does not support creating a dlarray type object by using the coder. typeof
function with upper bound size and variable dimensions specified. For example,
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1@
11
12
13

end

% generate random noise

function dlA = foo()

A = dlarray(ones(5,4),'SC');
A type = coder.typeof(A,[5 10],[1 0]); % Error: not supported.

end
Code generation supports use of coder. typeof without the size arguments. For example,

A = dlarray(ones(5,4),'SC");
A type = coder.typeof(A);

The code generation report does not display the size of the dlarray object. The size is always
displayed as 1x1.

dlarray(randn(1,1,latentDim,25), '55CB'})

ransontiosse = FAREY (AR LTI BN AR

if coder.target('MATLAB') && stremp(Environment, 'gpu’) | Class dlarray

randomNoise = gpuArray(randomMoise);

In MATLAB, dlarray enforces the order of labels 'SCBTU'. This enforcement eliminates
ambiguous semantics in operations, which implicitly match labels between inputs. This behavior is
mimicked during MEX code generation. However, for standalone code generation such as static,
dynamic libraries, or executables, the data format follows the specification of the fmt argument of
the dlarray object. As a result, if the input or output of an entry-point function is a dlarray
object and its order of labels is not 'SCBTU', then the data layout will be different between the
MATLAB environment and standalone code.

For example, consider a function foo with a dlarray object as an output.
function d1A = foo()
rng default
dlA = dlarray(rand(5,4), 'BC');
end
In MATLAB, d1lAis 4(C)-by-5(B).
dlA =
4(C) x 5(B) dlarray
0.8147 0.9058 0.1270 0.9134 0.6324
0.0975 0.2785 0.5469 0.9575 0.9649

0.1576 0.9706 0.9572 0.4854 0.8003
0.1419 0.4218 0.9157 0.7922 0.9595

For standalone code generation, d1A is 5(B)-by-4(C).

For code generation, the dlarray input to the predict method of the dlnetwork object must be
single data type.

See Also

Objects
dlarray | dlnetwork
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Related Examples

. “Generate Digit Images Using Variational Autoencoder on Intel CPUs” on page 39-146

More About

. “Code Generation for dlarray” on page 18-2

. “Define Custom Training Loops, Loss Functions, and Networks” (Deep Learning Toolbox)
. “Train Network Using Custom Training Loop” (Deep Learning Toolbox)

. “Make Predictions Using dlnetwork Object” (Deep Learning Toolbox)

18-14



Defining Functions for Code Generation

* “Code Generation for Variable Length Argument Lists” on page 19-2

* “Generate Code for arguments Block That Validates Input Arguments” on page 19-3

* “Specify Number of Entry-Point Function Input or Output Arguments to Generate” on page 19-5
* “Code Generation for Anonymous Functions” on page 19-8

* “Code Generation for Nested Functions” on page 19-9
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Code Generation for Variable Length Argument Lists

19-2

When you use varargin and varargout for code generation, there are these restrictions:

» Ifyouuse varargin to define an argument to an entry-point function, the code generator
produces the function with a fixed number of arguments. This fixed number of arguments is based
on the number of arguments that you specify when you generate code.

* You cannot write to varargin. If you want to write to input arguments, copy the values into a
local variable.

* Toindex into varargin and varargout, use curly braces {}, not parentheses ().

» The code generator must be able to determine the value of the index into varargin or
varargout.

See Also

More About

. “Nonconstant Index into varargin or varargout in a for-Loop” on page 37-14

. “Specify Number of Entry-Point Function Input or Output Arguments to Generate” on page 19-
5
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Generate Code for arguments Block That Validates Input
Arguments
You can generate code for arguments blocks that perform input argument validation in your
MATLAB function. Input argument validation declares specific restrictions on function input
arguments. Using argument validation, you can constrain the class, size, and other aspects of

function input values without writing code in the body of the function to perform these tests. See
“Function Argument Validation”.

function myFunction(inputArg)
arguments

. n PP R P P D . T, 1
inputérg (aimL,dims,...) Llassivame JCRLJCNLuan, = defoultValue

end Size Class Functions

% Function code

end

Supported Features

Code generation supports most features of arguments blocks, including size and class validation,
validation functions, and default values.

Code generation supports only varargin as a repeating argument. For varargin, size validation,
class validation, and validation functions are not supported for code generation.

Code generation does not support these features of arguments blocks:

* Repeating arguments other than varargin
* Name-value arguments
* Output argument validation

Input Type Specification and arguments blocks

Using function argument validation (arguments blocks) to specify input types of entry-point
functions is not supported. Even if your entry-point function contains arguments blocks that validate
the input arguments, you must specify the properties of these input arguments by using one of the
three approaches listed in “Methods for Defining Properties of Primary Inputs” on page 27-47.

Default Values for Entry-Point Function Inputs in Generated Code

The arguments block allows you to specify default values for one or more positional input
arguments. Specifying a default value in the argument declaration makes a positional argument
optional because MATLAB can use the default value when you do not pass a value in the function call.
When you generate code by using the codegen command or accelerate fixed-point code by using the
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fiaccel command, you can choose to not specify the properties of one or more optional positional
arguments that have constant default values. In such situations, the default values of these optional
arguments are hard-coded in the generated code and these arguments do not appear in the
generated code interface. For examples, see the following table.

MATLAB Code

Generated Code

function out = useDefaults 1(a,b,c)
arguments

a (1,1) double = 3
b (1,1) double =5
c (1,1) double = 7

end

out =a+ b + c;

end

codegen command:
codegen -config:lib -c useDefaults 1 -args
Generated code:

double useDefaults 1(void)

{
}

return 15.0;

function out = useDefaults 2(a,b,c)
arguments
a (1,1) double

codegen command:

codegen -config:lib -c useDefaults 2 -args

b (1,1) double =5
c (1,1) double = 7 Generated code:
end
out =a+ b+ c; double useDefaults 2(double a)
end {
return (a + 5.0) + 7.0;
}
codegen command:
codegen -config:lib -c useDefaults 2 -args
Generated code:
double useDefaults 2(double a, double b)
{
return (a + b) + 7.0;
}
See Also

arguments | varargin

Related Examples
. “Function Argument Validation”

. “Methods for Defining Properties of Primary Inputs” on page 27-47
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Specify Number of Entry-Point Function Input or Output
Arguments to Generate

You can control the number of input or output arguments in a generated entry-point function. From
one MATLAB function, you can generate entry-point functions that have different signatures.

Control Number of Input Arguments

If your entry-point function uses varargin, specify the properties for the arguments that you want in
the generated function.

Consider this function:

function [x, y] = myops(varargin)
%#codegen
if (nargin > 1)

x = varargin{l} + varargin{2};

y = varargin{l} * varargin{2};
else

X = varargin{l};

y = -varargin{l};

end

To generate a function that takes only one argument, provide one argument with -args.
codegen myops -args {3} -report

If you use the MATLAB Coder app:

1 On the Define Input Types page, click Let me enter input or global types directly.

To add an argument, in the variables table, to the right of varargin, click +

e X
) mMyops.m Mumber of outputs: | 2=
varargin cell(1=0) +

)

Add global

3 Specify the properties for each argument.

Q¢ X
L mMyops.m Mumber of outputs: | 2=
= varargin cell{1x 1) +
varargin{ 1} double(1 x 1)

Add global

If you generate code by using codegen, you can also control the number of input arguments when
the MATLAB function does not use varargin.
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Consider this function:

function [x, y] = myops(a,b)

s#codegen
if (nargin > 1)
X =a+ b;
y =a*b;
else
X = a;
y = -a;
end

To generate a function that takes only one argument, provide one argument with -args.

codegen myops -args {3} -report

Control the Number of Output Arguments

If you generate code by using codegen, you can specify the number of output arguments by using the
-nargout option.

Consider this function:

function [x, y] = myops(a,b)
s#codegen

X =a+ b;

y =a*b;

end

Generate a function that has one output argument.
codegen myops -args {2 3} -nargout 1 -report

You can also use -nargout to specify the number of output arguments for an entry-point function
that uses varargout.

Rewrite myops to use varargout.

function varargout = myops(a,b)

s#codegen
varargout{l} = a + b;
varargout{2} = a * b;
end

Generate code for one output argument.
codegen myops -args {2 3} -nargout 1 -report

If you use the MATLAB Coder app, to specify the number of outputs when a function returns
varargout or to generate fewer outputs than the function defines:

1 On the Define Input Types page, define the input types manually or by using Autodefine Input
Types.
2 In Number of outputs, select the number.
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e X
) My ops.m Murmnber of outputs: | 2 E}
a double(1x1)
b double(1x 1)
Add global
See Also
More About
. “Code Generation for Variable Length Argument Lists” on page 19-2

. “Specity Properties of Entry-Point Function Inputs” on page 27-44
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Code Generation for Anonymous Functions

19-8

You can use anonymous functions in MATLAB code intended for code generation. For example, you
can generate code for the following MATLAB code that defines an anonymous function that finds the
square of a number.

sqr = @(x) x."2;
a = sqr(5);

Anonymous functions are useful for creating a function handle to pass to a MATLAB function that
evaluates an expression over a range of values. For example, this MATLAB code uses an anonymous
function to create the input to the fzero function:

b =2;
c = 3.5;
x = fzero(@(x) x™3 + b*x + c,0);

Anonymous Function Limitations for Code Generation

Anonymous functions have the code generation limitations of value classes and cell arrays.

See Also

More About

. “MATLAB Classes Definition for Code Generation” on page 15-2
. “Cell Array Limitations for Code Generation” on page 9-8

. “Parameterizing Functions”
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Code Generation for Nested Functions

You can generate code for MATLAB functions that contain nested functions. For example, you can
generate code for the function parent fun, which contains the nested function child fun.

function parent fun

X =5;
child fun
function child fun
X =X+ 1;
end
end

Nested Function Limitations for Code Generation

When you generate code for nested functions, you must adhere to the code generation restrictions for
value classes, cell arrays, and handle classes. You must also adhere to these restrictions:

» If the parent function declares a persistent variable, it must assign the persistent variable before
it calls a nested function that uses the persistent variable.

* A nested recursive function cannot refer to a variable that the parent function uses.

» If a nested function refers to a structure variable, you must define the structure by using struct.

» If a nested function uses a variable defined by the parent function, you cannot use
coder.varsize with the variable in either the parent or the nested function.

See Also

More About

. “MATLAB Classes Definition for Code Generation” on page 15-2
. “Handle Object Limitations for Code Generation” on page 15-21
. “Cell Array Limitations for Code Generation” on page 9-8

. “Code Generation for Recursive Functions” on page 20-12
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* “Resolution of Function Calls for Code Generation” on page 20-2

» “Resolution of File Types on Code Generation Path” on page 20-4

* “Compilation Directive %#codegen” on page 20-5

* “Use MATLAB Engine to Execute a Function Call in Generated Code” on page 20-6
* “Code Generation for Recursive Functions” on page 20-12

* “Force Code Generator to Use Run-Time Recursion” on page 20-15

* “Avoid Duplicate Functions in Generated Code” on page 20-18
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Resolution of Function Calls for Code Generation

20-2

From a MATLAB function, you can call local functions, supported toolbox functions, and other
MATLAB functions. MATLAB resolves function names for code generation as follows:

Key Points About Resolving Function Calls

The diagram illustrates key points about how MATLAB resolves function calls for code generation:
» Searches two paths, the code generation path and the MATLAB path

See “Compile Path Search Order” on page 20-2.

* Attempts to compile functions unless the code generator determines that it should not compile
them or you explicitly declare them to be extrinsic.

If a MATLAB function is not supported for code generation, you can declare it to be extrinsic by
using the construct coder.extrinsic, as described in “Use the coder.extrinsic Construct” on
page 20-7. During simulation, the code generator produces code for the call to an extrinsic
function, but does not generate the internal code for the function. Therefore, simulation can run
only on platforms where MATLAB software is installed. During standalone code generation, the
code generator attempts to determine whether the extrinsic function affects the output of the
function in which it is called — for example by returning mxArrays to an output variable. If the
output does not change, code generation proceeds, but the extrinsic function is excluded from the
generated code. Otherwise, compilation errors occur.

The code generator detects calls to many common visualization functions, such as plot, disp,
and figure. The software treats these functions like extrinsic functions but you do not have to
declare them extrinsic using the coder.extrinsic function.

* Resolves file type based on precedence rules described in “Resolution of File Types on Code
Generation Path” on page 20-4

Compile Path Search Order
During code generation, function calls are resolved on two paths:
1 Code generation path

MATLAB searches this path first during code generation. The code generation path contains the
toolbox functions supported for code generation.

2 MATLAB path
If the function is not on the code generation path, MATLAB searches this path.

MATLAB applies the same dispatcher rules when searching each path (see “Function Precedence
Order”).

When to Use the Code Generation Path

Use the code generation path to override a MATLAB function with a customized version. A file on the
code generation path shadows a file of the same name on the MATLAB path.



Resolution of Function Calls for Code Generation

For more information on how to add additional folders to the code generation path, see “Paths and
File Infrastructure Setup” on page 27-79.
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Resolution of File Types on Code Generation Path

MATLAB uses the following precedence rules for code generation:
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Compilation Directive %#codegen

Add the %#codegen directive (or pragma) to your function after the function signature to indicate
that you intend to generate code for the MATLAB algorithm. Adding this directive instructs the

MATLAB Code Analyzer to help you diagnose and fix violations that would result in errors during
code generation.

function y = my fcn(x) %#codegen

Note The %#codegen directive is not necessary for MATLAB Function blocks. Code inside a MATLAB
Function block is always intended for code generation. The %#codegen directive, or the absence of it,
does not change the error checking behavior.
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Use MATLAB Engine to Execute a Function Call in Generated
Code

When processing a call to a function foo in your MATLAB code, the code generator finds the
definition of foo and generates code for its body. In some cases, you might want to bypass code
generation and instead use the MATLAB engine to execute the call. Use coder.extrinsic('foo")
to declare that calls to foo do not generate code and instead use the MATLAB engine for execution.
In this context, foo is referred to as an extrinsic function. This functionality is available only when
the MATLAB engine is available during execution. Examples of such situations include execution of
MEX functions, Simulink simulations, or function calls at the time of code generation (also known as
compile time).

If you generate standalone code for a function that calls foo and includes
coder.extrinsic('foo'), the code generator attempts to determine whether foo affects the
output. If foo does not affect the output, the code generator proceeds with code generation, but
excludes foo from the generated code. Otherwise, the code generator produces a compilation error.

Including the coder.extrinsic('foo"') directive inside a certain MATLAB function declares all
calls to foo inside that MATLAB function as extrinsic. Alternatively, you might want to narrow the
scope of extrinsic declaration to just one call to foo. See “Call MATLAB Functions Using feval” on
page 20-9.

Code generation Simulation

Does

. . Send furction (o
exfrinsic function

MATLAE for

Generate compiler

amor +—YES affect 2::5:; of the execution {do not
function? compile}

WO

}

Elide the function
call {do mot
generate code for
function)

When To Declare a Function as Extrinsic

These are some common situations in which you might consider declaring a MATLAB function as
extrinsic:
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* The function performs display or logging actions. Such functions are useful primarily during
simulation and are not used in embedded systems.

* In your MEX execution or Simulink simulation, you want to use a MATLAB function that is not
supported for code generation. This workflow does not apply to non-simulation targets.

* You instruct the code generator to constant fold a function call by using coder. const. In such
situations, the function is called only during code generation when the MATLAB engine is
available for executing the call.

Use the coder.extrinsic Construct

To declare a function foo as extrinsic, include this statement in your MATLAB code.
coder.extrinsic('foo")
When declaring functions as extrinsic for code generation, adhere to these rules:

» Declare the function as extrinsic before you call it.
* Do not use the extrinsic declaration in conditional statements.

* Assign the return value of an extrinsic function to a known type. See “Working with mxArrays” on
page 20-9.

For additional information and examples, see coder.extrinsic.

The code generator automatically treats many common MATLAB visualization functions, such as
plot, disp, and figure, as extrinsic. You do not have to explicitly declare them as extrinsic
functions by using coder.extrinsic. For example, you might want to call plot to visualize your
results in the MATLAB environment. If you generate a MEX function from a function that calls plot,
and then run the generated MEX function, the code generator dispatches calls to the plot function
to the MATLAB engine. If you generate a library or executable, the generated code does not contain
calls to the plot function.

If you generate MEX or standalone C/C++ code by using MATLAB Coder, the code generation report
highlights calls from your MATLAB code to extrinsic functions. By inspecting the report, you can
determine which functions are supported only in the MATLAB environment.

mystats.m

1 function [mean, stdev] = mystats(vals)

2 H#codegen

3

4 % Calculates a statistical mean and a standard

5 % deviation for the values in wvals.

6

7 len = length{vals)

8 mean = avg(vals, 1 plot(vals, " -+')

9 stdev = sgrt({sum(( 1)/ 1len);

18 : Size 1=1
11 Class:  mxArray
12 function z = avg(y = : o

) i) plot is an exirnsic funclion.
13 z = sum{v)/1;
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Scope of Extrinsic Function Declarations

The coder.extrinsic construct has function scope. For example, consider the following code:

function y = foo %#codegen
coder.extrinsic('rat', 'min');
[N D] = rat(pi);

y =0;

y min(N, D);

In this example, rat and min as treated as extrinsic every time they are called in the main function
foo. There are two ways to narrow the scope of an extrinsic declaration inside the main function:

* Declare the MATLAB function extrinsic in a local function, as in this example:

function y = foo %#codegen
coder.extrinsic('rat');

[N D] = rat(pi);

y = 0;

y mymin(N, D);

function y = mymin(a,b)
coder.extrinsic('min');
y = min(a,b);

Here, the function rat is extrinsic every time it is called inside the main function foo, but the
function min is extrinsic only when called inside the local function mymin.

* Instead of using the coder.extrinsic construct, call the MATLAB function using feval. This
approach is described in the next section.

Extrinsic Declaration for Nonstatic Methods

Suppose that you define a class myClass that has a nonstatic method foo, and then create an
instance obj of this class. If you want to declare the method obj . foo as extrinsic in your MATLAB
code that you intend for code generation, follow these rules:

* Write the call to foo as a function call. Do not write the call by using the dot notation.
* Declare foo to be extrinsic by using the syntax coder.extrinsic('foo"').

For example, define myClass as:

classdef myClass
properties
prop =1
end
methods
function y = foo(obj,x)
y = obj.prop + Xx;
end
end
end

Here is an example MATLAB function that declares foo as extrinsic.

function y = myFunction(x) S%#codegen
coder.extrinsic('foo');
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bj myClass;

0 =
y = foo(obj,x);
end

Nonstatic methods are also known as ordinary methods. See “Method Syntax”.
Additional Uses

Use the coder.extrinsic construct to:

» Call MATLAB functions that do not produce output during simulation without generating
unnecessary code.

* Make your code self-documenting and easier to debug. You can scan the source code for
coder.extrinsic statements to isolate calls to MATLAB functions, which can potentially create
and propagate mxArrays. See “Working with mxArrays” on page 20-9.

Call MATLAB Functions Using feval

To narrow the scope of extrinsic declaration to just one function call, use the function feval. feval
is automatically interpreted as an extrinsic function during code generation. So, you can use feval
to call functions that you want to execute in the MATLAB environment, rather than compile to
generated code.

Consider this example:

function y = foo
coder.extrinsic('rat');
[N D] = rat(pi);

y =0;

y feval('min',N,D);

Because feval is extrinsic, the statement feval('min',N,D) is evaluated by MATLAB, not
compiled, which has the same result as declaring the function min extrinsic for just this one call. By
contrast, the function rat is extrinsic throughout the function foo.

The code generator does not support the use of feval to call local functions or functions that are
located in a private folder.

Working with mxArrays

The run-time output of an extrinsic function is an mxArray, also known as a MATLAB array. The only

valid operations for mxArrays are:

* Storing an mxArray in a variable.

* Passing an mxArray to an extrinsic function.

* Returning an mxArray from a function back to MATLAB.

* Converting an mxArray to a known type at run time. Assign the mxArray to a variable whose type
is already defined by a prior assignment. See the following example.

To use an mxArray returned by an extrinsic function in other operations (for example, returning it
from a MATLAB Function block to Simulink execution), you must first convert it to a known type.
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If the input arguments of a function are mxArrays, the code generator automatically treats the
function as extrinsic.

Convert mxArrays to Known Types

To convert an mxArray to a known type, assign the mxArray to a variable whose type is defined. At
run time, the mxArray is converted to the type of the variable that it is assigned to. If the data in the
mxArray is not consistent with the type of the variable, you get a run-time error.

For example, consider this code:

function y = foo %#codegen
coder.extrinsic('rat');

[N D] = rat(pi);

y = min(N,D);

Here, the top-level function foo calls the extrinsic MATLAB function rat, which returns two
mxArrays representing the numerator N and denominator D of the rational fraction approximation of
pi. You can pass these mxArrays to another MATLAB function, in this case, min. Because the inputs
passed to min are mxArrays, the code generator automatically treats min as an extrinsic function. As
a result, min returns an mxArray.

While generating a MEX function by using MATLAB Coder, you can directly assign this mxArray
returned by min to the output y because the MEX function returns its output to MATLAB.

codegen foo

Code generation successful.

But if you put foo in a MATLAB Function block in a Simulink model and then update or run the
model, you get this error:

Function output 'y' cannot be an mxArray in this context.
Consider preinitializing the output variable with a known type.

This error occurs because returning an mxArray back to Simulink is not supported. To fix this issue,
define y to be the type and size of the value that you expect min to return, in this case, a scalar
double:

function y = foo %#codegen
coder.extrinsic('rat');

[N D] = rat(pi);

y = 0; % Define y as a scalar of type double
y min(N,D);

In this example, the output of the extrinsic function min affects the output y of the entry-point
function foo for which you are generating code. If you attempt to generate standalone code (for
example, a static library) for foo, the code generator is unable to ignore the extrinsic function call
and produces a code generation error.

codegen -config:lib foo

??? The extrinsic function 'min' is not available for standalone code generation. It must be elil
generated. It could not be eliminated because its outputs appear to influence the calling functi
'min' or by ensuring that its outputs are unused.

Error in ==> foo Line: 4 Column: 5
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Code generation failed: View Error Report

Error using codegen

Restrictions on Using Extrinsic Functions

The full MATLAB run-time environment is not supported during code generation. Therefore, the
following restrictions apply when calling MATLAB functions extrinsically:

MATLAB functions that inspect the caller, or read or write to the caller workspace, do not work
during code generation. Such functions include:

+ dbstack

* evalin

* assignin

* save

Functions in generated code can produce unpredictable results if your extrinsic function performs
these actions at run time:

* Changes folders

* Changes the MATLAB path

* Deletes or adds MATLAB files

* Changes warning states

* Changes MATLAB preferences

* Changes Simulink parameters

The code generator does not support the use of coder.extrinsic to call functions that are
located in a private folder.

The code generator does not support the use of coder.extrinsic to call local functions.
You can call extrinsic functions with up to 64 inputs and 64 outputs.

See Also
coder.extrinsic | coder.const
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Code Generation for Recursive Functions

To generate code for recursive MATLAB functions, the code generator uses compile-time recursion on
page 20-12 or run-time recursion on page 20-13. You can influence whether the code generator

uses compile-time or run-time recursion by modifying your MATLAB code. See “Force Code Generator
to Use Run-Time Recursion” on page 20-15.

You can disallow recursion on page 20-13 or disable run-time recursion on page 20-13 by modifying
configuration parameters.

When you use recursive functions in MATLAB code that is intended for code generation, you must
adhere to certain restrictions. See “Recursive Function Limitations for Code Generation” on page 20-
14.

Compile-Time Recursion

With compile-time recursion, the code generator creates multiple versions of a recursive function in
the generated code. The inputs to each version have values or sizes that are customized for that
version. These versions are known as function specializations. You can tell that the code generator
used compile-time recursion by looking at the code generation report or the generated C code. Here
is an example of compile-time recursion in the report.

MATLAB SOURCE
Function List Call Tree
= A call_ mysum.m
fx call_mysum
fx mysum > 1
jx mysum > 2
fx mysum > 3
Jx mysum > 4

Sometimes, the function specializations do not appear in the C/C++ code because of optimizations.
For example, consider this function:

function y = foo()

s#codegen

X = 10;

y = sub(x);
end

function y = sub(x)
coder.inline( 'never');

if x > 1
y = X + sub(x-1);
else
y = X;
end
end

In the code generation report, on the Function List tab, you see the function specializations for
MATLAB function sub.
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MATLAE SOURCE

Function List Call Tree
g %)) foo.m
fx foo

fx sub

fx sub

fx sub

fx sub

fx sub

fx sub

fx sub

fx sub

fx sub

fx sub

== 0O 00 =] o N &= w Pk =

[—]

However, the C code does not contain the specializations. It contains one function that returns the
value 55.

Run-Time Recursion

With run-time recursion, the code generator produces a recursive function in the generated code. You
can tell that the code generator used run-time recursion by looking at the code generation report or
the generated C code. Here is an example of run-time recursion in the report.
MATLAB SOURCE
Function List Call Tree

= A call_mysum.m

fx call_mysum

fx mysum

Disallow Recursion

* In a code generation configuration object, set the CompileTimeRecursionLimit configuration
parameter to 0.

* In the MATLAB Coder app, set the value of the Compile-time recursion limit setting to 0.
Disable Run-Time Recursion

Some coding standards, such as MISRA®, do not allow recursion. To increase the likelihood of
generating code that is compliant with MISRA C®, disable run-time recursion.

* In a code generation configuration object, set EnableRuntimeRecursion to false.
* In the MATLAB Coder app, set Enable run-time recursion to No.
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If your code requires run-time recursion and run-time recursion is disabled, you must rewrite your
code so that it uses compile-time recursion or does not use recursion.

Recursive Function Limitations for Code Generation

When you use recursion in MATLAB code that is intended for code generation, follow these
restrictions:

» Assign all outputs of a run-time recursive function before the first recursive call in the function.
* Assign all elements of cell array outputs of a run-time recursive function.

* Inputs and outputs of run-time recursive functions cannot be classes.

* The maximum stack usage on page 35-15 setting is ignored for run-time recursion.

See Also

More About

. “Force Code Generator to Use Run-Time Recursion” on page 20-15

. “Output Variable Must Be Assigned Before Run-Time Recursive Call” on page 37-4
. “Compile-Time Recursion Limit Reached” on page 37-7

. “Configure Build Settings” on page 27-13

. “Code Generation Reports” on page 29-7
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Force Code Generator to Use Run-Time Recursion

When your MATLAB code includes recursive function calls, the code generator uses compile-time or
run-time recursion. With compile-time recursion on page 20-12, the code generator creates multiple
versions of the recursive function in the generated code. These versions are known as function
specializations. With run-time recursion on page 20-13, the code generator produces a recursive
function. If compile-time recursion results in too many function specializations or if you prefer run-
time recursion, you can try to force the code generator to use run-time recursion. Try one of these
approaches:

* “Treat the Input to the Recursive Function as a Nonconstant” on page 20-15

» “Make the Input to the Recursive Function Variable-Size” on page 20-16
* “Assign Output Variable Before the Recursive Call” on page 20-17

Treat the Input to the Recursive Function as a Nonconstant

Consider this function:

function y = call _recfcn(n)
A ones(1l,n);

X 5;

y recfcn(A,x);

en

[N | I [ ||

function y = recfcn(A,x)
if 51ze( ,2) =1 || x
A(1);

else

y = A(1l)+recfcn(A(2:end),x-1);
end
end

call recfcn calls recfcn with the value 5 for the second argument. recfcn calls itself recursively
until x is 1. For each recfcn call, the input argument x has a different value. The code generator
produces five specializations of recfcn, one for each call. After you generate code, you can see the
specializations in the code generation report.

MATLAB SOURCE
Function List Call Tree

= £ call_recfcn.m
fx call_recfcn

fx recfen = 1

fx recfen = 2

fx recfen = 3

fx recfecn = 4

fxrecfen = 5

To force run-time recursion, in call recfcn, in the call to recfcn, instruct the code generator to
treat the value of the input argument x as a nonconstant value by using coder.ignoreConst.
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function y = call recfcn(n)

A = ones(1,n);
x = coder.ignoreConst(5);
y = recfcn(A,x);
end
function y = recfcn(A,x)
if 51ze( ,2) =1 || x=1
A(1);
else
y = A(1l)+recfcn(A(2:end),x-1);
end
end

After you generate code, in the code generation report., you see only one specialization.

MATLAB SOURCE
Function List Call Tree
T £ call_recfcn.m

fx call_recfcn
fx recfen

Make the Input to the Recursive Function Variable-Size

Consider this code:

function z = call mysum(A)
s#codegen

z = mysum(A);

end

function y = mysum(A)
coder.inline( 'never');
if size(A,2) ==

y = A(1);
else

y = A(1)+ mysum(A(2:end));
end
end

If the input to mysum is fixed-size, the code generator uses compile-time recursion. To force the code
generator to use run-time conversion, make the input to mysum variable-size by using
coder.varsize.

function z = call mysum(A)
s#codegen

B = A;

coder.varsize('B');

z = mysum(B);

end

function y = mysum(A)

coder.inline('never');
if size(A,2) == 1
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y = A(1);
else

y = A(1)+ mysum(A(2:end));
end
end

Assign Output Variable Before the Recursive Call

The code generator uses compile-time recursion for this code:

function y = callrecursive(n)

x = 10;
y = myrecursive(x,n);
end

function y = myrecursive(x,n)
coder.inline( 'never')
if x>1

y = n + myrecursive(x-1,n-1);

else

y =n;
end
end

To force the code generator to use run-time recursion, modify myrecursive so that the output y is
assigned before the recursive call. Place the assignment y = n in the if block and the recursive call
in the else block.

function y = callrecursive(n)

x = 10;
y = myrecursive(x,n);
end

function y = myrecursive(x,n)
coder.inline( 'never')

if x =1
y =n;
else
y = n + myrecursive(x-1,n-1);
end
end
See Also

coder.ignoreConst

More About

. “Code Generation for Recursive Functions” on page 20-12
. “Output Variable Must Be Assigned Before Run-Time Recursive Call” on page 37-4
. “Compile-Time Recursion Limit Reached” on page 37-7
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Avoid Duplicate Functions in Generated Code

Issue

You generate code and it contains multiple, duplicate copies of the same functions, with only slight
differences, such as modifications to the function signature. For example, your generated code might
contain functions called foo and b_foo. Duplicate functions can make the generated code more
difficult to analyze and manage.

Cause

Duplicate functions in the generated code are the result of function specializations. The code
generator specializes functions when it detects that they differ at different call sites by:

e Number of input or output variables.

* Type of input or output variables.

* Size of input or output variables.

* Values of input variables.

In some cases, these specializations are necessary for the generated C/C++ code because C/C++

functions do not have the same flexibility as MATLAB functions. In other cases, the code generator
specializes functions to optimize the generated code or because of a lack of information.

Solution
In certain cases, you can alter your MATLAB code to avoid the generation of duplicate functions.
Identify Duplicate Functions by Using Code Generation Report

You can determine whether the code generator created duplicate functions by inspecting the code
generation report or in Simulink, the MATLAB Function report. The report shows a list of the
duplicate functions underneath the entry-point function. For example:

MATLAB SOURCE
Function List Call Tree

= #j call_recfcn.m
fx call_recfcn

fx recfen = 1

fx recfen = 2

fx recfen = 3

fx recfen = 4

jx recfen = 5

Duplicate Functions Generated for Multiple Input Sizes

If your MATLAB code calls a function multiple times and passes inputs of different sizes, the code
generator can create specializations of the function for each size. To avoid this issue, use
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coder.ignoreSize on the function input. For example, this code uses coder.ignoreSize to avoid
creating multiple copies of the function index0f:

function [outl, out2] = testl(in)
a = 1:10;
b = 2:40;
% Without coder.ignoreSize duplicate functions are generated
outl = indexOf(coder.ignoreSize(a), in);
out2 = indexOf(coder.ignoreSize(b), in);
end

function index = indexOf(array, value)
coder.inline( 'never');
for 1 = l:numel(array)

if array(i) == value
index = i;
return
end
end
index = -1;
return
end

To generate code, enter:
codegen testl -config:lib -report -args {1}
Duplicate Functions Generated for Different Input Values

If your MATLAB code calls a function and passes multiple different constant inputs, the code
generator can create specializations of the function for each different constant. In this case, use
coder.ignoreConst to indicate to the code generator not to treat the value as an immutable
constant. For example:

function [out3, outd4] = test2(in)
c=1['a', 'b', 'c'l;

if in > 0
c(2)="d";
end
out3 = index0f(c, coder.ignoreConst('a'));
out4 = index0f(c, coder.ignoreConst('b'));
end

function index = indexOf(array, value)
coder.inline('never');
for i = 1l:numel(array)

if array(i) == value
index = 1i;
return
end
end
index = -1;
return
end

To generate code, enter:
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codegen test2 -config:lib -report -args {1}
Duplicate Functions Generated for Different Number of Outputs

If your MATLAB code calls a function and accepts a different number of outputs at different call sites,
the code generator can produce specializations for each call. For example:

[a b] = foo();
c = foo();

To make each call return the same number of outputs and avoid duplicate functions, use the ~
symbol:

[a b] = foo();
[c, ~] = foo();

See Also
coder.ignoreConst | coder.varsize | coder.ignoreSize

More About
. “Code Generation Reports” on page 29-7
. “Force Code Generator to Use Run-Time Recursion” on page 20-15



Fixed-Point Conversion

* “Detect Unexecuted and Constant-Folded Code” on page 21-2

* “Convert MATLAB Code to Fixed-Point C Code” on page 21-5

* “Propose Fixed-Point Data Types Based on Simulation Ranges” on page 21-6
* “Propose Fixed-Point Data Types Based on Derived Ranges” on page 21-17

» “Specify Type Proposal Options” on page 21-29

* “Detect Overflows” on page 21-32

* “Replace the exp Function with a Lookup Table” on page 21-40

* “Replace a Custom Function with a Lookup Table” on page 21-47

* “Enable Plotting Using the Simulation Data Inspector” on page 21-53

* “Visualize Differences Between Floating-Point and Fixed-Point Results” on page 21-54
* “View and Modify Variable Information” on page 21-64

* “Automated Fixed-Point Conversion” on page 21-67

* “Convert Fixed-Point Conversion Project to MATLAB Scripts” on page 21-86
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Detect Unexecuted and Constant-Folded Code
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During the simulation of your test file, the MATLAB Coder app detects unexecuted code or code that
is constant folded. Code that is not executed by the test bench may be unreachable code or dead
code. The app uses the code coverage information when translating your code from floating-point
MATLAB code to fixed-point MATLAB code. Reviewing code coverage results helps you to verify that
your test file is exercising the algorithm adequately.

The app inserts inline comments in the fixed-point code to mark the unexecuted and untranslated
regions. It includes the code coverage information in the generated fixed-point conversion HTML
report. The app editor displays a color-coded bar to the left of the code. This table describes the color
coding.

Coverage Bar Indicates
Color
Green One of the following situations:

* The entry-point function executes multiple times and the code executes more
than one time.

* The entry-point function executes one time and the code executes one time.

Different shades of green indicate different ranges of line execution counts. The
darkest shade of green indicates the highest range.

Orange The entry-point function executes multiple times, but the code executes one
time.
Red Code does not execute.

What Is Unexecuted Code?

Unexecuted code is code that is not executed by the test bench during simulation. Unexecuted code
can result from these scenarios:
* Defensive code containing intended corner cases that are not reached

* Human error in the code, resulting in code that cannot be reached by any execution path,
sometimes referred to as unreachable code or dead code

* Inadequate test bench range which does not provide inputs that execute all paths in the code
* Constant folding

Detect Unexecuted Code

This example shows how to detect code in your algorithm that is not executed by the test bench by
using the MATLAB Coder app.

1 In alocal writable folder, create the function myFunction.m.

function y = myFunction(u,v)
s#codegen
for i = 1:length(u)
if u(i) > v(i)
y=bar(u,v);
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else
tmp = u;
v = tmp;
y = baz(u,v);
end
end

end

function y = bar(u,v)
y = utv;
end

function y = baz(u,v)
y = u-v;
end
In the same folder, create a test file, myFunction tb.

1:100;
101:200;

u
\"
myFunction(u,v);

From the apps gallery, open the MATLAB Coder app.

Set Numeric Conversion to Convert to fixed point.

On the Select Source Files page, browse to the myFunction file, and click Open.

Click Next. On the Define Input Types page, browse to select the test file that you created,

myFunction_tb. Click Autodefine Input Types.
Click Next. On the Check for Run-Time Issues page, click Check for Issues.

The app runs the myFunction_tb test file and detects no issues.
Click Next. On the Convert to Fixed-Point page, click Analyze to simulate the entry-point
functions, gather range information, and get proposed data types.

The color-coded bar on the left side of the edit window indicates whether the code executes.

The

code in the first condition of the if-statement does not execute during simulation because u is
never greater than v. The bar function never executes because the if-statement never executes.
These parts of the algorithm are marked with a red bar, indicating that they are not executed by

the test bench.

To apply the proposed data types to the function, click Convert .

The MATLAB Coder app generates a fixed-point function, myFunction fixpt. The generated
fixed-point code contains comments around the pieces of code identified as not being executed by
the test bench. The Validation Results pane proposes that you use a more thorough test bench.

When the MATLAB Coder app detects unexecuted code, consider editing your test file so that
your algorithm is exercised over its full range. If your test file already reflects the full range of

the input variables, consider editing your algorithm to eliminate the unreachable code.

10 Close the MATLAB Coder app.

Fix Unexecuted Code

1

Edit the test file myFunction tb.m to include a wider range of inputs.

u
\'

1:100;
-50:2:149;
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myFunction(u,v);

2 Reopen the MATLAB Coder app.

3 Using the same function and the edited test file, go through the conversion process again.

4 After you click Analyze, this time the code coverage bar shows that all parts of the algorithm
execute with the new test file input ranges.

To finish the conversion process and convert the function to fixed point, click Convert.
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Convert MATLAB Code to Fixed-Point C Code

To convert MATLAB Code to fixed-point C Code using the MATLAB Coder app:

10

11
12
13

Open the MATLAB Coder app.

On the Select Source Files page, add the entry-point function from which you want to generate
code.

Set Numeric Conversion to Convert to fixed point.

Click Next to go to the Define Input Types step. The app analyzes the function for coding issues
and code generation readiness. If the app identifies issues, it opens the Review Code
Generation Readiness page where you can review and fix issues. If the app does not find
issues, it opens the Define Input Types page.

On the Define Input Types page, specify a test file that the app can use to define the input
types.

Click Next to go to the Check for Run-Time Issues step.

On the Check for Run-Time Issues page, specify a test file that calls your entry-point function.
Alternatively, at the prompt, enter code that calls your entry-point function. The app generates
instrumented MEX. It runs the test file or code that you specified, replacing calls to your entry-
point function with calls to the generated MEX function. If the app finds issues, it provides

warning and error messages. Click a message to highlight the problematic code in a window
where you can edit the code.

Click Next to go to the Convert to Fixed Point step.

Propose data types based on simulation range data, derived (also known as static) range data, or
both. See “Propose Fixed-Point Data Types Based on Simulation Ranges” on page 21-6 and
“Propose Fixed-Point Data Types Based on Derived Ranges” on page 21-17.

To convert the floating